Open Access Open Access  Restricted Access Subscription or Fee Access

Nanowire Photodetectors and Applications: A Review Study

Aditi Rai, Usha Shukla

Abstract


The utilization of nanowires and nanowire structures as photodetectors is an arising research subject. Novel gadget structures incorporated in single nanowire gadgets are additionally being effectively contemplated and created. Here, general NW-PD ideas are investigated, along with a point-by-point depiction of the actual phenomenon happening in nanowire photoconductors & phototransistors. Low dimensional frameworks like nanotubes and nanowires have intriguing, and technologically valuable, optical and electrical properties. Studies on these frameworks advance our insight on the science at the nanoscale & give the opportunities for creating scaled down electronic and optoelectronics. They consist of a variety of components, including carbon, silicon, germanium, and conducting materials like copper, silver, and gold. Owing to their unique characteristics (such as large surface area, efficient strain relaxation, and effects of quantum confinement), they often provide superior results when compared to other thin-film counterparts and bulk or three-dimensional nanomaterials. Through various synthesis techniques, many additional materials, including metals, semiconductors, and polymers, can be produced as nanowires. A point of view towards future bearings towards the utilization of semi-conductor nanowire photoconductors as intra-chip interconnects, single-photon detectors & picture sensors, have additionally been given.


Keywords


Nanowires; Photodetectors; laser rangefinders (LIDAR); Properties and Applications

Full Text:

PDF

References


S. Ravi, D. Bisen, S. Usha, and B. Sharma, “X-ray diffraction: a powerful method of characterizing nanomaterials,” RRST., vol. 4, no. 8, pp. 77–79, 2012.

U. Shukla and S. Sharma, “Types and Applications of Optoelectronic Devices,” Res. Rev. J. Pure Appl. Phys., vol. 10, no. 2, pp. 10–25, Mar. 2022.

Shukla Usha. (2023). Carbon Nanotubes: Potentially Revolutionary Impact of Nanomaterials. Journal of Nanoscience & Reports, 5(2), 2–7.

Otnes G and Borgström M T 2017 Towards high efficiency nanowire solar cells Nano Today 12 31–45.

Yang Y, Guo W, Qi J, Zhao J and Zhang Y 2010 Selfpowered ultraviolet photodetector based on a single Sbdoped ZnO nanobelt Appl. Phys. Lett. 97 223113.

Nie B, Luo L-B, Chen J-J, Hu J-G, Wu C-Y, Wang L, Yu Y-Q, Zhu Z-F and Jie J-S 2013 Fabrication of p-type ZnSe: Sb nanowires for high-performance ultraviolet light photodetector application Nanotechnology 24 095603.

Monroy E, Omnès F and Calle F 2003 Wide-bandgap semiconductor ultraviolet photodetectors Semicond. Sci. Technol. 18 R33–51.

I. Milostnaya, A. Korneev, M. Tarkhov, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, O. Okunev, G. Chulkova, K. Smirnov, and G. Gol’tsman, J. Low Temp. Phys. 151, 591.

Maria Spies and Eva Monroy 2019 Semicond. Sci. Technol. 34 053002

Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematic-illustration-of-the-ZnO-ZnS-core-shell-nanowire-photodetector-fabrication_fig2_277782132 [accessed 25 Apr, 2022]

Spies, Maria & Monroy, Eva. (2019). Nanowire photodetectors based on wurtzite semiconductor heterostructures. Semiconductor Science and Technology. 34. 053002. 10.1088/1361-6641/ab0cb8.

Soci, C., Zhang, A., Bao, X.-Y., Kim, H., Lo, Y., & Wang, D. (2010). Nanowire Photodetectors. Journal of Nanoscience and Nanotechnology, 10(3), 1430–1449. doi:10.1166/jnn.2010.2157

Dai, X., Zhang, S., Wang, Z., Adamo, G., Liu, H., Huang, Y., … Soci, C. (2014). GaAs/AlGaAs Nanowire Photodetector. Nano Letters, 14(5), 2688–2693. doi:10.1021/nl5006004

Maria Spies and Eva Monroy 2019 Semicond. Sci. Technol. 34 053002

Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon 4, 297–301 (2010). https://doi.org/10.1038/nphoton.2010.40

R R LaPierre et al 2017 J. Phys. D: Appl. Phys. 50 123001

Yan R, Gargas D and Yang P 2009 Nanowire photonics Nat. Photonics 3 569–76

J. Hu, M. Ouyang, P. Yang, C. M. Lieber, Nature 1999, 399, 48.

Ren, D.; Rong, Z.; Azizur-Rahman, K.M.; Somasundaram, S.; Shahili, M.; Huffaker, D.L. 2019, 30, 044002.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Journal of Semiconductor Devices and Circuits

Publisher: STM Journals, an imprint of CELNET (Consortium e-Learning Network Pvt. Ltd.)

Address: A-118, 1st Floor, Sector-63, Noida, Uttar Pradesh-201301, India

Phone no.: 0120-478-1215/ Email: [email protected]