Open Access Open Access  Restricted Access Subscription or Fee Access

Food Packaging Development: Recent Perspective

Neela Emanuel, Harloveleen Kaur Sandhu

Abstract


Abstract
Latest emerging trends in food packaging has given a boost to food processing industries. There is a continuous demand for the cleaner label without the sacrifice of taste and flavor for healthier ingredients. The quality of the packaged food product, freshness, sensory perception, and convenience are all crucial purchasing factors for the millennial. Recent developments on food packaging materials have reduced the wastages along with enhancing the product quality as well as extending its shelf life and ensuring product safety. This article reviews the innovative developments for the active packaging with emphasis on modified atmospheric, antimicrobial, antioxidant, intelligent packaging, and nanotechnology in food packaging. The emphasis is on the freshness, retaining nutritional quality and after use disappearance of food packaging materials in the soil and water in an environmentally friendly way.


Keywords


Antimicrobial packaging, antioxidant packaging, flavor releasers, intelligent packaging, MAP, nanotechnology

Full Text:

PDF

References


Ahmed I, Lin H, Zou L, et al. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control. 2017; 82: 163-178. doi:10.1016/j.foodcont.2017.06.009

Kerry JP. New Packaging Technologies, Materials and Formats for Fast-Moving Consumer Products. In: Han JH, editors. Innovations in Food Packaging: Second Edition. 2nd Edn. USA: Academic Press; 2014: 549-584. doi:10.1016/B978-0-12-394601-0.00023-0

Realini CE, Marcos B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014; 98(3): 404-419. doi:10.1016/j.meatsci.2014.06.031

Dave D, Ghaly AE. Meat spoilage mechanisms and preservation techniques: A critical review. Am J Agric Biol Sci. 2011; 6(4): 486-510. doi:10.3844/ajabssp.2011.486.510

Mariutti LRB, Nogueira GC, Bragagnolo N. Lipid and Cholesterol Oxidation in Chicken Meat Are Inhibited by Sage but Not by Garlic. J Food Sci. 2011; 76(6): 909-915. doi:10.1111/j.1750-3841.2011.02274.x

Alparslan Y, Baygar T. Effect of Chitosan Film Coating Combined with Orange Peel Essential Oil on the Shelf Life of Deepwater Pink Shrimp. Food Bioprocess Technol. 2017; 10(5): 842-853. doi:10.1007/s11947-017-1862-y

Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F. Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll. 2015; 44: 172-182. doi:10.1016/j.foodhyd.2014.09.004

Hosseini SF, Rezaei M, Zandi M, et al. Effect of Fish Gelatin Coating Enriched with Oregano Essential Oil on the Quality of Refrigerated Rainbow Trout Fillet. J Aquat Food Prod Technol. 2016; 25(6): 835-842. doi:10.1080/10498850.2014.943917

Debiagi F, Mali S, Grossmann MVE, et al. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Brazilian Arch Biol Technol. 2011; 54(5): 1043-1052. doi:10.1590/S1516-89132011000500023

Yam KL, Takhistov PT, Miltz J. Intelligent Packaging : Concepts and applications. J Food Sci. 2005; 70(1): 1-10.

Tewari G, Jayas DS, Jeremiah LE, et al. Prevention of transient discoloration of beef. J Food Sci. 2001; 66(3): 506-510. doi:10.1111/j.1365-2621.2001.tb16140.x

Tewari G, Jayas DS, Jeremiah LE, et al. Absorption kinetics of oxygen scavengers. Int J Food Sci Technol. 2002;37(2):209-217. doi:10.1046/j.1365-2621.2002.00558.x

Payne SR, Durham CJ, Scott SM, et al. The effects of non-vacuum packaging systems on drip loss from chilled beef. Meat Sci. 1998; 49(3): 277-287. doi:10.1016/S0309-1740(97)00135-6

Martínez L, Djenane D, Cilla I, et al. Effect of varying oxygen concentrations on the shelf-life of fresh pork sausages packaged in modified atmosphere. Food Chem. 2006; 94(2): 219-225. doi:10.1016/j.foodchem.2004.11.007

Guynot ME, Sanchis V, Ramos AJ, et al. Mold-free Shelf-life Extension of Bakery Products by Active Packaging. J Food Sci. 2003; 68(8): 2547-2552. doi:10.1111/j.1365-2621.2003.tb07059.x

Berenzon S, Sam Saguy I. Oxygen absorbers for extension of crackers shelf-life. LWT - Food Sci Technol. 1998; 31(1): 1-5. doi:10.1006/fstl.1997.0286

Perkins ML, Zerdin K, Rooney ML, et al. Active packaging of UHT milk to prevent the development of stale flavour during storage. Packag Technol Sci. 2007; 20(2): 137-146. doi:10.1002/pts.749

Oyugi E, Buys EM. Microbiological quality of shredded Cheddar cheese packaged in modified atmospheres. Int J Dairy Technol. 2007; 60(2): 89-95. doi:10.1111/j.1471-0307.2007.00315.x

Day BPF. Active Packaging of Foods. (Day BPF, ed.). UK: Campden and Chorleywood Food Research Assosiation; 1998.

Brody AL, Strupinsky E, Kline L. Odor Removers. In: Brody AL, Strupinsky E, Kline L, editors. Active Packaging for Food Applications. Lancaster, PA; Technomic publishing Company Inc.; 2001: 107-117.

Jayasena DD, Jo C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci Technol. 2013; 34(2): 96-108. doi:10.1016/j.tifs.2013.09.002

Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol. 2002; 3(2): 113-126. doi:10.1016/S1466-8564(02)00012-7

Smith JP, Hoshino J, Abe Y. Interactive packaging involving sachet technology. In: Rooney ML, editor. Active Food Packaging. Springer. Boston, MA; 1995: 143-173. doi:10.1007/978-1-4615-2175-4_6

Hansen R, Rippl C, Midkiff D, et al. Antimicrobial absorbent pad. 1989: 865-855.

Ayala-Zavala JF, González-Aguilar GA. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. J Food Sci. 2010; 75(7): 398-405. doi:10.1111/j.1750-3841.2010.01723.x

Seo HS, Bang J, Kim H, et al. Development of an antimicrobial sachet containing encapsulated allyl isothiocyanate to inactivate Escherichia coli O157:H7 on spinach leaves. Int J Food Microbiol. 2012; 159(2): 136-143. doi:10.1016/j.ijfoodmicro.2012.08.009

Djenane D. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus. Foods. 2015; 4(4): 208-228. doi:10.3390/foods4020208

Harpaz S, Glatman L, Drabkin V, et al. Effects of Herbal Essential Oils Used To Extend the Shelf Life of Freshwater-Reared Asian Sea Bass Fish (Lates calcarifer). J Food Prot. 2003; 66(3): 410-417. doi:10.4315/0362-028x-66.3.410

Suppakul P, Miltz J, Sonneveld K, et al. Active Packaging Technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci. 2003; 68(2): 408-420. doi:10.1017/S014338571100109X

De Camargo Andrade-Molina TP, Shirai MA, Victória Eiras Grossmann M, et al. Active biodegradable packaging for fresh pasta. LWT - Food Sci Technol. 2013; 54(1): 25-29. doi:10.1016/j.lwt.2013.05.011

Ščetar M, Kurek M, Galić K. Trends in Fruit and Vegetable Packaging – a Review. Croat J Food Technol. 2010; 5(3-4): 69-86. doi:http://hrcak.srce.hr/file/95967

Franssen LR, Krochta JM. Edible coatings containing natural antimicrobials for processed foods. In: Roller S, editor. Natural Antimicrobials for the Minimal Processing of Foods. Woodhead Publishing Limited; 2003: 250-262. doi:10.1016/B978-1-85573-669-6.50017-4

Chen W, Jin TZ, Gurtler JB, et al. Inactivation of Salmonella on whole cantaloupe by application of an antimicrobial coating containing chitosan and allyl isothiocyanate. Int J Food Microbiol. 2012; 155(3): 165-170. doi:10.1016/j.ijfoodmicro.2012.02.001

Jung J, Cavender G, Simonsen J, et al. Investigation of the Mechanisms of Using Metal Complexation and Cellulose Nanofiber/Sodium Alginate Layer-by-Layer Coating for Retaining Anthocyanin Pigments in Thermally Processed Blueberries in Aqueous Media. J Agric Food Chem. 2015; 63(11): 3031-3038. doi:10.1021/acs.jafc.5b00616

Lou M-M, Li B, Xie G-L, et al. Antibacterial activity and mechanism of action of chitosan solutions against apricot fruit rot pathogen Burkholderia seminalis. Carbohydr Res. 2011; 346(11): 1294-1301. doi:10.1016/j.carres.2011.04.042

Yang G, Yue J, Gong X, et al. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol Technol. 2014; 92: 46-53. doi:10.1016/j.postharvbio.2014.01.018

Caetano K dos S, Lopes NA, Costa TMH, et al. Characterization of Active Biodegradable Films Based on Cassava Starch and Natural compounds. Starch/Staerke. 2018;16:138-147. doi:10.1016/j.fpsl.2018.03.006

Debiagi F, Kobayashi RKT, Nakazato G, et al. Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Ind Crops Prod. 2014; 52: 664-670. doi:10.1016/j.indcrop.2013.11.032

Arabi SA, Chen X, Shen L, et al. Flavor-Release Food and Beverage Packaging. Woodhead Publishing Limited; 2012. doi:10.1016/B978-1-84569-809-6.50006-3

Vital ACP, Guerrero A, Monteschio J de O, et al. Effect of Edible and Active Coating (with Rosemary and Oregano Essential Oils) on Beef Characteristics and Consumer Acceptability. PLoS One. 2016; 11(8): 1-15. doi:10.1371/journal.pone.0160535

Gomez-Estaca J, Lopez-de-Dicastillo C, Hernandez-Munoz P, et al. Advances in antioxidant active food packaging. Trends Food Sci Technol. 2014; 35(1): 42-51. doi:10.1016/j.tifs.2013.10.008

Fernández-Pan I, Carrión-Granda X, Maté JI. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control. 2014; 36(1): 69-75. doi:10.1016/j.foodcont.2013.07.032

Scannell AG, Hill C, Ross R, et al. Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin ®. Int J Food Microbiol. 2000; 60: 241-249. doi:10.1016/S0168-1605(00)00314-7

Woraprayote W, Malila Y, Sorapukdee S, et al. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016; 120: 118-132. doi:10.1016/j.meatsci.2016.04.004

Zacharof MP, Lovitt RW. Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia. 2012; 2: 50-56. doi:10.1016/j.apcbee.2012.06.010

Line JE, Svetoch EA, Eruslanov B V., et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother. 2008; 52(3): 1094-1100. doi:10.1128/AAC.01569-06

Woraprayote W, Pumpuang L, Tosukhowong A, et al. Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT - Food Sci Technol. 2018; 89(September 2017): 427-433. doi:10.1016/j.lwt.2017.10.026

McMillin KW. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. 2008;80(1):43-65. doi:10.1016/j.meatsci.2008.05.028

Costa C, Lucera A, Conte A, et al. Effects of passive and active modified atmosphere packaging conditions on ready-to-eat table grape. J Food Eng. 2011; 102(2): 115-121. doi:10.1016/j.jfoodeng.2010.08.001

Zhao Y, Wells JH, McMillin KW. Applications of Dynamic Modified Atmosphere Packaging Systems for Fresh Red Meats: Review. J Muscle Foods. 1994; 5(3): 299-328. doi:10.1111/j.1745-4573.1994.tb00538.x

Kim YH, Huff-Lonergan E, Sebranek JG, et al. High-oxygen modified atmosphere packaging system induces lipid and myoglobin oxidation and protein polymerization. Meat Sci. 2010; 85(4): 759-767. doi:10.1016/j.meatsci.2010.04.001

Lu D-H, Zhang M, Wang S-J, et al. Effects of modified atmosphere packaging with different sizes of silicon gum film windows on Salicornia bigelovii Torr. storage. J Sci Food Agric. 2009; 89(9): 1559-1564. doi:10.1002/jsfa.3624

Li T, Zhang M. Effects of modified atmosphere package (MAP) with a silicon gum film window and storage temperature on the quality and antioxidant system of stored Agrocybe chaxingu. LWT - Food Sci Technol. 2010; 43(7): 1113-1120. doi:10.1016/j.lwt.2010.02.018

Kerry JP, O’Grady MN, Hogan SA. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci. 2006; 74(1): 113-130. doi:10.1016/j.meatsci.2006.04.024

Schaefer D, Cheung WM. Smart Packaging: Opportunities and Challenges. Procedia CIRP. 2018; 72: 1022-1027. doi:10.1016/j.procir.2018.03.240

Dobrucka R, Cierpiszewski R. Active and Intelligent Packaging Food – Research and Development – A Review. Polish J Food Nutr Sci. 2014; 64(1): 7-15. doi:10.2478/v10222

Mousavi A, Sarhadi M, Lenk A, et al. Tracking and traceability in the meat processing industry: A solution. Br Food J. 2002; 104(1): 7-19. doi:10.1108/00070700210418703

Taoukis P, Labuza T. Time Temperature Indicators. In: Ahvenainen R, editor. Novel Food Packaging Techniques. Cambridge, UK: Woodhead Publishing; 2003:103-126.

Tsironi T, Gogou E, Velliou E, et al. Application and validation of the TTI based chill chain management system SMAS (Safety Monitoring and Assurance System) on shelf life optimization of vacuum packed chilled tuna. Int J Food Microbiol. 2008; 128(1): 108-115. doi:10.1016/j.ijfoodmicro.2008.07.025

Nuin M, Alfaro B, Cruz Z, et al. Modelling spoilage of fresh turbot and evaluation of a time-temperature integrator (TTI) label under fluctuating temperature. Int J Food Microbiol. 2008; 127(3): 193-199. doi:10.1016/j.ijfoodmicro.2008.04.010

Andersen HJ, Skibsted LH. Oxidative Stability of Frozen Pork Patties. Effect of Light and Added Salt. J Food Sci. 1991; 56(5): 1182-1184. doi:10.1111/j.1365-2621.1991.tb04729.x

Ravichandran R. Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. Int J Green Nanotechnol Phys Chem. 2010; 1(2): 72-96. doi:10.1080/19430871003684440

Assis RQ, Lopes SM, Costa TMH, et al. Active biodegradable cassava starch films incorporated lycopene nanocapsules. Ind Crops Prod. 2017; 109. doi:10.1016/j.indcrop.2017.09.043

Seoktae K, Mathieu P, Lisa D P, et al. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir. 2007; 23(14): 8670-8673. doi:10.1021/LA701067R

Lopez-Rubio A, Gavara R, Lagaron JM. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol. 2006; 17(10): 567-575. doi:10.1016/j.tifs.2006.04.012

Meetoo DD. Nanotechnology and the food sector: From the farm to the table. Emirates J Food Agric. 2011; 23(5): 387-403.

García M, Forbe T, Gonzalez E. Potential applications of nanotechnology in the agro-food sector. Ciência e Tecnol Aliment. 2011; 30(3): 573-581. doi:10.1590/s0101-20612010000300002

Rai V, Acharya S, Dey N. Implications of Nanobiosensors in Agriculture. J Biomater Nanobiotechnol. 2012; 3(2): 315-324. doi:10.4236/jbnb.2012.322039

Mousavi SR, Rezaei M. Nanotechnology in Agriculture and Food Production. J Appl Environ Biol Res. 2011; 1(10): 414-419. doi:10.4172/2157-7439.1000123

Su HC, Zhang M, Bosze W, et al. Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors. Nanotechnology. 2013; 24(50): 1-11. doi:10.1088/0957-4484/24/50/505502

Mao X, Huang J, Leung MF, et al. Novel core-shell nanoparticles and their application in high-capacity immobilization of enzymes. Appl Biochem Biotechnol. 2006; 135(3): 229-246. doi:10.1385/ABAB:135:3:229

Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009; 27(2): 82-89. doi:10.1016/j.tibtech.2008.10.010

Vidhyalakshmi R, Bhakyaraj R, Subhasree RS. Encapsulation “ The Future of Probiotics ” -A Review. Adv Biol Res (Rennes). 2009; 3(3-4): 96-103.

Biswal S, Nayak A, Parida U, et al. Applications of Nanotechnology in agriculture and Food Sciences. Int J Sci Innov Discov. 2012; 2(1): 21-36.

Yuan Y, Gao Y, Zhao J, et al. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int. 2008; 41(1): 61-68. doi:10.1016/j.foodres.2007.09.006

Senturk A, Yalcin B, Otles S. Nanotechnology as a food perspective. J Nanomater Mol Nanotechnol. 2013; 2(6). doi:10.4172/2324-8777.1000125

Wanekaya AK, Chen W, Myung N V, et al. Nanowire-based electrochemical biosensors. Electroanalysis. 2006; 18(6): 533-550. doi:10.1002/elan.200503449

Li Y, Cu YTH, Luo D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol. 2005; 23(7): 885-889. doi:10.1038/nbt1106

Yotova L, Yaneva S, Marinkova D. Biomimetic Nanosensors for Determination of Toxic Compounds in Food and Agricultural Products (Review). J Chem Technol Metall. 2013; 48(3): 215-227.

Flanagan J, Singh H. Microemulsions: A potential delivery system for bioactives in food. Crit Rev Food Sci Nutr. 2006;46(3):221-237. doi:10.1080/10408690590956710

Davis D, Guo X, Musavi L, et al. Gold Nanoparticle-Modified Carbon Electrode Biosensor for the Detection of Listeria monocytogenes. Ind Biotechnol. 2013; 9(1): 31-36. doi:10.1089/ind.2012.0033

Thirumurugan A, Ramachandran S, Shiamala Gowri A. Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria - an approach for food packaging material preparation. Int Food Res J. 2013; 20(4): 1909-1912.

Moraru C, Panchapakesan C, Huang Q, et al. Nanotechnology: a new frontier in food science. Food Technol. 2003; 57(12): 24-29.

Baeummer A. Nanosensors identify pathogens in food. Food Technol. 2004; 58(8): 51-55.

Mason TG, Wilking JN, Meleson K, et al. Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter. 2006; 18(41): 635-666. doi:10.1088/0953-8984/18/41/R01

Burdo OG. Nanoscale effects in food-production technologies. J Eng Phys Thermophys. 2005; 78(1): 90-96. doi:10.1007/s10891-005-0033-6

Arshak K, Adley C, Moore E, et al. Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sensors Actuators, B Chem. 2007; 126(1): 226-231. doi:10.1016/j.snb.2006.12.006

Bouwmeester H, Dekkers S, Noordam MY, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2009; 53(1): 52-62. doi:10.1016/j.yrtph.2008.10.008

Kumar S, Shukla A, Baul PP, et al. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life. 2018; 16(March): 178-184. doi:10.1016/j.fpsl.2018.03.008

Coma V. Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci. 2008; 78(1-2): 90-103. doi:10.1016/j.meatsci.2007.07.035

Horner SR, Mace CR, Rothberg LJ, et al. A proteomic biosensor for enteropathogenic E. coli. Biosens Bioelectron. 2006; 21(8): 1659-1663. doi:10.1016/j.bios.2005.07.019

Jones N, Ray B, Ranjit KT, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008; 279(1): 71-76. doi:10.1111/j.1574-6968.2007.01012.x

Zhao R, Torley P, Halley PJ. Emerging biodegradable materials: Starch- and protein-based bio-nanocomposites. J Mater Sci. 2008;43(9):3058-3071. doi:10.1007/s10853-007-2434-8

Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci. 2009; 14(1): 3-15. doi:10.1016/j.cocis.2008.01.002


Refbacks

  • There are currently no refbacks.