Open Access Open Access  Restricted Access Subscription or Fee Access

Applications of Nano-Chemical Compounds

Nagham Mahmood Aljamali, Jalal Hasan Mohammed, Rajaa Abdulameer Ghafil

Abstract


The review study collected good information about nano-chemicals such as nano-polymers and nano-chemicals that are included in the fields of materials sciences and polymers and the connections of these sciences with physics, mechanical engineering, bio-engineering and chemical engineering from multiple branches and sub-specialties within these sciences, all related to the investigation of the properties of matter at this small level. Nanotechnology is a scientific application that produces things by assembling them on a small level from their basic components, such as atoms and molecules. As long as all the materials made up of atoms are aligned according to a certain structure, we can replace an atom of one element and align an atom to another element in its place, and thus we can make something new from almost anything. Sometimes these materials surprise us with new properties that we did not know before, which opens new areas for their use and harnessing for the benefit of humans. The difficulty of nanotechnology lies in the extent to which it is possible to control the atoms after the fragmentation of the materials that make up them. Therefore, it needs very accurate devices in terms of its size, measurements and ways of seeing the particles under examination. In addition, there is still controversy and fears about the effects of nanotechnology, and the need to control it.


Keywords


Nano chemistry, Nano applications, Nano industry, Nano polymer, Drug delivery

Full Text:

PDF

References


LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003; 21 (10): 1184–1191. doi:10.1038/nbt876. PMID 14520404.

Cavalcanti A, Shirinzadeh B, Freitas RA Jr, et al. Nanorobot architecture for medical target identification. Nanotechnology. 2008; 19 (1). doi:10.1088/0957-4484/19/01/01510

Aviram, A, Mark A. Ratner. Molecular Rectifier. Chemical Physics Letters. 1974; 29 (2): 277–283. doi:10.1016/0009-2614(74)85031-1.

Aviram, A. Molecules for memory, logic, and amplification. Journal of the American Chemical Society. 1988; 110 (17): 5687–5692. doi:10.1021/ja00225a017.

Jensen, K., J. Weldon, H. Garcia, et al. Nanotube Radio. Nano Lett. 2007; 7 (11): 3508–3511. doi:10.1021/nl0721113.

Valenti G, Rampazzo R, Bonacchi S, et al. Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core Shell Silica Nanoparticles. J. Am. Chem. Soc. 2016; 138 (49): 15935–15942. doi:10.1021/jacs.6b08239. PMID 27960352

Nagham Mahmood Aljamali, Ahmed Kareem Thamer, Aryaf Mahmood Sabea. Review on Electronic Instruments and Its Nano-Skill Solicitations. Journal of Electrical and Power System Engineering. 2021; 7 (3): 11–19.

Pliskin, N.H., Meyer, G.J., Dolske, M.C., et al. Neuropsychiatric aspects of electrical injury: a review of neuropsychological research. Annals of the New York Academy of Sciences. 1994; 720 (1): 219-223. DOI: https://doi.org/10.1111/j.1749-6632.1994.tb30450.x

Grigorovich, A., Gomez, M., Leach, L., et al. Impact of posttraumatic stress disorder and depression on neuropsychological functioning in electrical injury survivors. Journal of Burn Care & Research. 2013; 34 (6): 659–665, DOI: https://doi.org/10.1097/BCR.0b013e31827e5062

Nagham Mahmood Aljamali, Widad Hashim Yahya Almuhana. Review on Biomedical Engineering and Engineering Technology in Bio-Medical Devices. Journal of Advances in Electrical Devices. 2021; 6 (2): 18–24, Available at: https://www.researchgate.net/publication/

_Review_on_Biomedical_Engineering_and_Engineering_Technology_in_Bio-_Medi

cal_Devices.

Nagham Mahmood Aljamal, Jihan Razzaq Moslim. Review on Engineering Designs for Laboratory Chemical Devices and Displays. Journal of Control and Instrumentation Engineering. 2021; 7 (2): 38–46.

Halliday, D., Resnick, R., Krane, K.S. Physics, vol. 2. Wiley Custom Learning Solutions. 2015.

Griffiths, D.J., Colleger, R. Introduction to Electrodynamics. Upper Saddle River. New Jersey: Prentice Hall. 1999. 7458.

Aljamali, N.M., Kahm, A.J., Al-Jelehawy, A.H.J. Review in Protection of Laboratory and Electrical Equipment in Laboratories and Institutions. Journal of Controller and Converters. 2021; 6 (1): 24–30. Available at: http://matjournals.in/index.php/JoCC/article/view/6614

Haus, H.A., Melcher, J.R. Electromagnetic fields and energy (Vol. 107). Englewood Cliffs, NJ: Prentice Hall. 1989.

Nagham Mahmood Aljamali, Huda Sabah Hassen. Review on Engineering Applications of Designed Polymers to Protect Electrical Equipment. Journal of Power Electronics and Devices. 2021: 7 (2): 26–3.

Pasa, André Avelino. Chapter 13: Metal Nanolayer-Base Transistor-Handbook of Nanophysics: Nanoelectronics and Nanophotonics. 2010. 1–13. ISBN 9781420075519

Nagham Mahmood Aljamali, Abbas Hmood Jassim, Nabaa Hameed Chekhyor. Electronic Laser Applications in Engineering Laboratory and Medical Devices: Review. Journal of Instrumentation and Innovation Sciences. 2021; 6 (3): 1–9.

Alhashimi, M.T.M., Muhsin, N.M.B. Treatment of (Electric Wires and Machines)-Erosion via Engineering Materials by the Coating. NeuroQuantology. 2019; 17 (11): 11.

Ding, Y.; Hayes, M.J.; Widhalm, M. Measuring economic impacts of drought: A review and discussion". Disaster Prevention and Management. 2011; 20 (4): 434–446. doi:10.1108/096535

Aljamali, N.M., Hassn, H. Review on Engineering Applications of Designed Polymers to Protect Electrical Equipment. Journal of Power Electronics and Devices. 2021; 7(2): 26-32.

Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change. 2011; 2: 45–65. doi:10.1002/wcc.81.

Nagham Mahmood Aljamali, Asaed H Enad, Farah Wadai El-Taei. Engineering Design of Wireless Communications and Networks: Review. Journal of Controller and Converters. 2021; 6 (3): 8–15.

Gu, B.K., Ismail, Y.A., Spinks, G.M., et al. A linear actuation of polymeric nanofibrous bundle for artificial muscles. Chemistry of materials. 2009; 21 (3): 511–515. Available at https://pubs.acs.org/doi/abs/10.1021/cm802377d

Carney, R., Warner, J., Iliffe, S., et al. Effect: a randomised, controlled trial. BMC medical research methodology. 2007; 7 (2): 4–9, Available at: https://bmcmedresmethodol.biomedcentral.

com/articles/10.1186/1471-2288-7-42.

Pearson, K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1900; 50 (302): 157–175. DOI: https://doi.org/10.1080/14786440009463897

Jahinpoor, Mohsen, ed. Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, Volume 2. Royal Society of Chemistry. 2016. Available at https://pubs.rsc.org/en/content/ebook/978-1-78262-728-3

Hingh, Simon. The code book the science of secrecy from ancient Egypt to quantum cryptography (Anchor Books). New York: Anchor Books. 2002. ISBN 972-0-385-49532-5., Available at http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm.,doi:10.1038/015492 a0.

Nagham Mahmood Aljamali, Khudheyer Abbas Aziz Alnomani, Maysaa A Alhar. Review on Electrical Protection Systems for Chemical and Biological Laboratory Equipment. Journal of Control and Instrumentation Engineering. 2021; 7(3): 16-23.

Buzea, Cristina; Pacheco, Ivan I.; Robbie, Kevin. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007; 2 (4): MR17–MR71. arXiv:0801.3280. doi:10.1116/1.2815690

Julie Brigham-Grette. Petroleum Geologists' Award to Novelist Crichton Is Inappropriate. Eos. 2006; 87 (36): 364. doi:10.1029/2006EO360008.

Vollath, Dieter; Fischer, Franz Dieter; Holec, David. Surface energy of nanoparticles–influence of particle size and structure. Beilstein Journal of Nanotechnology. 2018; 9: 2265–2276. doi:10.3762/bjnano.9.211. PMC 6122122. PMID 30202695.

Jiang, Q.; Liang, L.H.; Zhao, D.S. Lattice Contraction and Surface Stress of fcc Nanocrystals". The Journal of Physical Chemistry B. 2001; 105 (27): 6275–6277. doi:10.1021/jp010995n

Oh, Sang Ho; Legros, Marc; Kiener, Daniel; et al. In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nature Materials. 2009; 8 (2): 95–100. Bibcode:2009NatMa...8...95O. doi:10.1038/nmat2370. PMID 19151703.

Feruz, Yosi; Mordehai, Dan. Towards a universal size-dependent strength of face-centered cubic nanoparticles. Acta Materialia. 2016; 103: 433–441. Bibcode:2016AcMat.103..433F. doi:10.1016/j.actamat.2015.10.027.

Kulik, Andrzej; Kis, Andras; Gremaud, Gérard; et al. (2007), Bhushan, Bharat (ed.), "Nanoscale Mechanical Properties–Measuring Techniques and Applications", Springer Handbook of Nanotechnology, Springer Handbooks, Springer, pp. 1107–1136, Bibcode:2007shnt.book.1107K, doi:10.1007/978-3-540-29857-1_36, ISBN 978-3-540-29857-1

Ouyang, Q.; Ishida, K.; Okada, K. Investigation of micro-adhesion by atomic force microscopy. Applied Surface Science. 2001; 169–170 (1–2): 644–648. Bibcode: 2001ApSS..169..644O. doi:10.1016/S0169-4332(00)00804-7. ISSN 0169-4332.

Larson, Ian; Drummond, Calum J.; Chan, Derek Y. C.; et al. Direct force measurements between titanium dioxide surfaces. Journal of the American Chemical Society. 1993; 115 (25): 11885–11890. doi:10.1021/ja00078a029. ISSN 0002-7863.

Kappl, Michael; Butt, Hans-Jürgen. Particle & Particle Systems Characterization. 2002; 19 (3): 129–143. doi:10.1002/1521-4117(200207)19:3<129::AID-PPSC129>3.0.CO;2-G. ISSN 1521-4117

Wu, Jiang; Yu, Peng; Susha, Andrei S.; et al. Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars. Nano Energy. 2015; 13: 827–835. doi:10.1016/j.nanoen.2015.02.012.

Taylor, Robert A.; Otanicar, Todd P.; Herukerrupu, Yasitha; et al. Feasibility of nanofluid-based optical filters. Applied Optics.2013; 52 (7): 1413–22. Bibcode:2013ApOpt.52.1413T. doi:10.1364/AO.52.001413. PMID 23458793.

Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; et al. Nanofluid optical property characterization: Towards efficient direct absorption solar collectors". Nanoscale Research Letters. 2011; 6 (1): 225. Bibcode:2011NRL.6.225T. doi:10.1186/1556-276X-6-225. PMC 3211283. PMID 21711750.

Valenti G, Rampazzo E, Kesarkar S, et al. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coordination Chemistry Reviews. 2018; 367: 65–81. doi:10.1016/j.ccr.2018.04.011.

Taylor, Robert; Coulombe, Sylvain; Otanicar, Todd; et al. Small particles, big impacts: A review of the diverse applications of nanofluids. Journal of Applied Physics. 2013; 113 (1): 011301–011301–19. Bibcode:2013JAP...113a1301T. doi:10.1063/1.4754271.

Ghosh Chaudhuri, Rajib; Paria, Santanu. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications". Chemical Reviews. 2012; 112 (4): 2373–2433. doi:10.1021/cr100449n. PMID 22204603.

Loo, Jacky Fong-Chuen; Chien, Yi-Hsin; Yin, Feng; et al. Up conversion and down conversion nanoparticles for biophotonics and nanomedicine. Coordination Chemistry Reviews. 2019; 400: 213042. doi:10.1016/j.ccr.2019.213042. S2CID 203938224.

Yu, Peng; Yao, Yisen; Wu, Jiang; et al. Effects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells. Scientific Reports. 2017; 7 (1): 7696. Bibcode: 2017NatSR...7.7696Y. doi:10.1038/s41598-017-08077-9. PMC 5550503. PMID 28794487.

Whitesides, G.M.; John P. Mathias, Christopher T. Seto. Molecular Self-Assembly and Nano chemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science. 2019; 254 (5036): 1312–1319. Bibcode: 1991Sci...254.1312W. doi:10.1126/science.1962191. PMID 1962191.


Refbacks

  • There are currently no refbacks.