Open Access Open Access  Restricted Access Subscription or Fee Access

Composite Material-Based Leaf Spring for Vehicle-A Review

Manish Kumar Gupta, Mohd Faizan Hasan, Shara Khursheed

Abstract


This study is meant to be a comprehensive resource for designing a leaf spring using various composites, as automobile ventures are showing a strong interest in swapping out steel leaf springs for composite leaf springs in order to reduce weight, which is an important step for energy conservation as it lowers the vehicle's overall fuel consumption. Software like CAITA, Creo, etc. is used by certain authors to design leaf springs, while ANSYS software is also used to analyse leaf springs. According to many research studies, composite leaf springs are thought to offer advantages over standard mono and multi-steel leaf springs in terms of weight, stresses, vibration, expanding strength, exhaustion life, and riding comfort.


Keywords


ANSYS software,leaf spring,automobile industry,Analytical analysis,FRP

Full Text:

PDF

References


M. M. Shokrieh and D. Rezaei, “Analysis and optimization of a composite leaf spring,” Compos. Struct., vol. 60, no. 3, pp. 317–325, 2003, doi: 10.1016/S0263-8223(02)00349-5.

G. Shankar and S. Vijayarangan, “Mono Composite Leaf Spring for Light Weight Vehicle–Design, End Joint Analysis and Testing,” Mater. Sci., vol. 12, no. 3, pp. 220–225, 2006.

E. Mahdi, O. M. S. Alkoles, A. M. S. Hamouda, B. B. Sahari, R. Yonus, and G. Goudah, “Light composite elliptic springs for vehicle suspension,” Compos. Struct., vol. 75, no. 1–4, pp. 24–28, 2006, doi: 10.1016/j.compstruct.2006.04.082.

B. B. Deshmukh and S. B. Jaju, “Design and analysis of glass fiber reinforced polymer (GFRP) leaf spring,” Int. Conf. Emerg. Trends Eng. Technol. ICETET, pp. 82–87, 2011, doi: 10.1109/ICETET.2011.61.

H. A. Al-Qureshi, “Automobile leaf springs from composite materials,” J. Mater. Process. Technol., vol. 118, no. 1–3, pp. 58–61, 2001, doi: 10.1016/S0924-0136(01)00863-9.

P. K. Mallick, Fiber-reinforced Composites: Materials, Manufacturing, and Design, Third Edit. Taylor & Francis Group, 2007.

A. R. A. Talib, A. Ali, G. Goudah, N. A. C. Lah, and A. F. Golestaneh, “Developing a composite based elliptic spring for automotive applications,” Mater. Des., vol. 31, no. 1, pp. 475–484, 2010, doi: 10.1016/j.matdes.2009.06.041.

M. Gratton and E. Sancaktar, “Design, analysis, and optimization of composite leaf springs for light vehicle applications,” Am. Soc. Mech. Eng. Des. Eng. Div., vol. 96, pp. 7–17, 1997.

R. Jones, Mechanics of Composite Materials, Second Edi. Taylor & Francis, 1999.

C. J. Morris, “Composite integrated rear suspension,” Compos. Struct., vol. 5, no. 3, pp. 233–242, 1986, doi: 10.1016/0263-8223(86)90005-X.

J. P. Hou, G. Jeronimidis, J. Y. Cherruault, and R. Mayer, “Design, Testing, and Simulation of Fibre Composite Leaf Springs For Heavy Axle Loads,” J. Strain Anal. Eng. Des., vol. 40, no. 6, pp. 497–504, 2005, doi: 10.1243/030932405X30704.

S. A. Gebremeskel, “Design, Simulation, and Prototyping of Single Composite Leaf Spring for Light Weight Vehicle,” Glob. J. Res. Eng. Mech. Mech. Eng., vol. 12, no. 7, 2012.

I. Rajendran and S. Vijayarangan, “Optimal design of a composite leaf spring using genetic algorithms,” Comput. Struct., vol. 79, no. 11, pp. 1121–1129, 2001, doi: 10.1016/S0045-7949(00)00174-7.

S. Kumar, A. Medhavi, R. Kumar, and P. K. Mall, “Modeling and Analysis of Active Full Vehicle Suspension Model Optimized Using the Advanced Fuzzy Logic Controller,” Int. J. Acoust. Vib., vol. 27, no. 1, pp. 26–36, 2022, doi: 10.20855/ijav.2022.27.11825.

M. M. Patunkar and D. R. Dolas, “Modelling and Analysis of Composite Leaf Spring under the Static Load Condition by using FEA,” Int. J. Mech. Ind. Eng., no. January, pp. 1–4, 2011, doi: 10.47893/ijmie.2011.1001.

F. D. Meatto and E. D. Pilpel, “Durability comparison of fiberglass monoleaf hybrid and multileaf steel springs,” SAE Tech. Pap., vol. 1999, no. 724, 1999, doi: 10.4271/1999-01-0038.

K. K. Jadhao and R. S. Dalu, “Experimental Investigation & Numerical Analysis of Composite Leaf Spring,” Int. J. Eng. Sci. Technol., vol. 3, no. 6, pp. 4759–4764, 2011.

H. G. Reichwein, P. Langemeier, T. Hasson, and M. Schendzielorz, “Light, strong and economical - Epoxy fiber-reinforced structures for automotive mass production,” Soc. Plast. Eng. - 10th Annu. Automot. Compos. Conf. Exhib. 2010, ACCE 2010, pp. 329–348, 2010.

L. N. Associate, “Design and Analysis Of Mono Composite Leaf Spring For Suspension in Automobiles Design of Composite Mono Leaf Spring,” vol. 1, no. 6, pp. 1–13, 2012.

V. Pozhilarasu and T. P. Pillai, “Performance Comparison of Conventional and Composite Leaf Spring,” Int. J. Eng. Sci. Technol., vol. 4, no. 12, pp. 4827–4832, 2012.

Z. Yinhuan, X. Ka, and H. Zhigao, “Finite element analysis of composite leaf spring,” ICCSE 2011 - 6th Int. Conf. Comput. Sci. Educ. Final Progr. Proc., no. Iccse, pp. 316–319, 2011, doi: 10.1109/ICCSE.2011.6028643.

K. S. S. and D. A. budan T. Ekbote, “Optimal design and analysis of mono leaf composite spring by finite element analysis,” in IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012), 2012, pp. 41–46.

V. 21 Composites, P. under the direction of the A. I. H. Committee, and D. B. M. and S. L. Donaldson, ASM handbook : Composites, Eighth pri., vol. 21. United States of America: ASM International, 2001.

C. Atas, Y. Akgun, O. Dagdelen, B. M. Icten, and M. Sarikanat, “An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes,” Compos. Struct., vol. 93, no. 3, pp. 1178–1186, 2011, doi: 10.1016/j.compstruct.2010.10.002.




DOI: https://doi.org/10.37591/joaea.v10i1.7042

Refbacks

  • There are currently no refbacks.