Open Access Open Access  Restricted Access Subscription or Fee Access

Performance Improvement of Nano Field Effect Transistor Based on Zinc Oxide Semiconducting Materials – a Critical Analysis

Dr. Ram Chhavi Sharma, Vasundhara Yadav, Komal Yadav

Abstract


New semiconductor materials and new shapes for contemporary nanostructured semiconductor devices, like nanowires, have been researched as a result of advancements in transistor technology. Because of their unique electrical, photonic, and sensing capabilities, nanowires (NWs) constructed of various semiconductor material systems (gallium arsenide, zinc oxide, etc.) have been the subject of intense research over the past 20 years. Due to its distinctive properties, including high electron mobility, high crystalline quality, wide direct band gap of 3.365 eV at room temperature and 3.441 eV at absolute zero, high breakdown voltage, large saturation velocity, large exciton binding energy in comparison to gallium nitride (60 eV versus 25 eV for gallium nitride), low temperature epitaxial growth, wet etching, and top-down fabrication techniques, zinc oxide has attracted significant research efforts.Additionally, it exhibits a strong propensity to develop into nanostructured forms and is a promising semiconductor material with a variety of intriguing applications.The improvement in performance of FETs is examined critically in the current paper. This improvement is related to elements including increased density, decreased surface roughness, less leakage current, and fewer interface flaws like oxygen vacancies, interstitials, and dislocations, larger crystalline/grain size, passivation, source/drain electrode contact resistance, and interfacial trap density at the gate oxide/ZnO interface

Keywords


Nanowires, Zinc Oxide, Field Effect Transistor, Performance Improvement, Competing Materials

Full Text:

PDF

References


Chang P. C., Fan Z., Chien C, et al. High-performance ZnO nanowire field effect transistors, Appl. Phys. Lett. 2006; 89 (13): 133113.

Lee S, Kim S., Janes DB et al. Red-green-blue light sensitivity of oxide nanowire transistors for transparent display applications. AIP Adv. 2013; (3): 12112.

Yang J, Lee M. S, Lee H. J. et al. Hybrid ZnO nanowire networked field-effect transistor with solution-processed InGaZnO film. Appl. Phys. Lett. 2011; (98): 253106.

Kälblein D, Ryu H, Ante F. et al. High-Performance ZnO Nanowire Transistors with Aluminum Top-Gate Electrodes and Naturally Formed Hybrid Self-Assembled Monolayer/AlOx Gate Dielectric. ACS Nano. 2014; (8): 6840–6848.

Sultan SM, Ditshego N.J, Gunn R. et al. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors. Nanoscale Res. Lett.2014; (9):517.

Ju S, Li J, Liu J. et al. Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Nanowire Transistor Circuitry. Nano Lett. 2008; (8): 997–1004.

Özgür Ü, Alivov Y.I, Liu C. et al. A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 2005;(98):41301.

Coleman VA, and Jagadish C. Zinc Oxide Bulk, Thin Films and Nanostructures. 2006, Elsevier.

Pearton SJ, Norton D.P, Tien LC, et al. Modeling and Fabrication of ZnO Nanowire Transistors. Electron Devices, IEEE Transactions on. 2008; (55): 3012–3019.

Hong WK, Song S, Hwang DK. et al. Effects of surface roughness on the electrical characteristics of ZnO nanowire field effect transistors,” Appl. Surf. Sci.2008; (254):7559–7564.

Ahnood A, Ghaffarzadeh K, Nathan A. et al. Non-ohmic contact resistance and field-effect mobility in nanocrystalline silicon thin film transistors,” Appl. Phys. Lett.2008; (93): 163503.

Bang S, Lee S, Park J. et al. Investigation of the effects of interface carrier concentration on ZnO thin film transistors fabricated by atomic layer deposition. J. Phys. D. Appl. Phys. 2009; (42): 235102.

Kang K, Lim MH, Kim HG. High field-effect mobility ZnO thin-film transistors with Mg-doped Ba0.6 Sr0.4 TiO3 gate insulator on plastic substrates. Appl. Phys. Lett. 2007; (90)4:3502.

Carcia PF, McLean RS, and Reilly M.H. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 2006; (88): 123509.

Sze SM, and Ng K.K. Physics of semiconductor devices. 2007, Hoboken, N.J.: Wiley-Interscience.

Kwon S.S, Hong WK, Jo G. et al. Piezoelectric Effect on the Electronic Transport Characteristics of ZnO Nanowire Field-Effect Transistors on Bent Flexible Substrates. Adv. Mater. 2008; (20): 4557–4562.

Jeong S, Choe M, Kang J.W. et al. High-Performance Photoconductivity and Electrical Transport of ZnO/ZnS Core/Shell Nanowires for Multifunctional Nano-device Applications. ACS Appl. Mater. Interfaces. 2014 (6): 6170–6176.

Sohn JI, Hong WK, Lee M, et al. The influence of surface chemical dynamics on electrical and optical properties of ZnO nanowire field effect transistors. Nanotechnology, 2009; (20): 505202.

Zhaochun Z, Baibiao H, Yongqin Y, et al. Electrical properties and Raman spectra of undoped and Al-doped ZnO thin films by metalorganic vapor phase epitaxy. Mater. Sci. Eng. B. 2001; (86): 109–112.

Tomioka K. Yoshimura M., and Fukui T. A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 2012; (488): 189.

Jiang X, Xiong Q, Nam S. InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices. Nano Lett. 2007; (7): 3214–3218.

Wang CL, Lee I.C, Wu C.Y, et al. High-Performance Polycrystalline-Silicon Nanowire Thin-Film Transistors with Location-Controlled Grain Boundary via Excimer Laser Crystallization. IEEE Electron Device Lett. 2012; (33): 1562–1564.

Wong, W.S., Raychaudhuri, S., Lujan, R, et al. Hybrid Si Nanowire/Amorphous Silicon FETs for Large-Area Image Sensor Arrays. Nano Lett. 2011; (11): 2214–2218.

Sultan SM, Ditshego NJ, Gunn R, et al. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors.. Nanoscale Res. Lett. 2014; (9) :517.

Kim H, and Oh I.K. Review of plasma-enhanced atomic layer deposition: Technical enabler of nanoscale device fabrication. J. Appl. Phys. 2014; ( 53): 3S2, 03DA01.

Ghazali NAB, Ebert M, Ditshego NMJ, et al. Top-down fabrication optimization of ZnO nanowire-FET by sidewall smoothing. Microelectron. Eng.2016; (159): 121–126.

Zhang Y, Han D, Huang L., et al. Sn-doped ZnO thin-film transistors with AZO, TZO and Al heterojunction source/drain contacts. Electronics Letters, 2016; (52): 302–304.

Kim H.K, Han S.H, Seong TY. et al. Electrical and Structural Properties of Ti/Au Ohmic Contacts to n ZnO. J. Electrochem. Soc 2001; (148): G114–G117.

Kim SH, Jeong, KS. Lee GW, et al. Effects of the Al2O3 interlayer in ZnO thin-film transistors fabricated via atomic layer deposition. J. Inf. Disp. 2013; (14): 61–65.

Ditshego NMJ, Sun K, Zeimpekis, I. Effects of surface passivation on top-down ZnO nanowire transistors. Microelectron. Eng. 2015; (145): 91–95.

Masuda S, Kitamura K, Okumura Y. et al. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys.2003; (93):1624.


Refbacks

  • There are currently no refbacks.