Open Access Open Access  Restricted Access Subscription or Fee Access

Optical Recording of Surface-Driven Capillary Flow in Straight PMMA Microchannels

Subhadeep Mukhopadhyay

Abstract


Abstract

In this experimental work, a total of six individual straight microchannels are fabricated using maskless lithography, hot embossing lithography and direct bonding technique. Polymethylmethacrylate (PMMA) is the selected transparent polymer to fabricate these microchannels facilitating the optical recording of the surface-driven capillary flow of dyed water (working liquid) using a CMOS camera catching 25 frames per second with a corresponding time-scale resolution of 0.04 second. Dyed water as dyed working liquid is prepared to test the fabricated straight microchannels facilitating the optical recording of surface-driven capillary flow. Analysis is performed on each surface-driven capillary flow with respect to the effects of channel aspect ratio and surface wettability. Diffusion coefficient is determined as flow parameter corresponding to each surface-driven capillary flow of dyed water. This experimental work will be useful in commercial bioengineering applications to fabricate the microfluidic lab-on-a-chip systems.

Keywords: PMMA; Dyed water; Optical recording; CMOS camera 

Cite this Article

Subhadeep Mukhopadhyay. Optical Recording of Surface-Driven Capillary Flow in Straight PMMA Microchannels. Trends in Opto-electro & Optical Communication. 2020; 10(1): 24–30p.


Full Text:

PDF

References


S. A. Soper, A. C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, R. L. McCarley, “Surface Modification of Polymer-Based Microfluidic Devices”, Analytica Chimica Acta, Vol. 470 (2002) Pages 87-99.

H. Makamba, J. H. Kim, K. Lim, N. Park, J. H. Hahn, “Surface Modification of poly(dimethylsiloxane) Microchannels”, Electrophoresis, Vol. 24 (2003) Pages 3607-3619.

T. Rohr, D. F. Ogletree, F. Svec, J. M. J. Frechet, “Surface Functionalization of Thermoplastic Polymers for the Fabrication of Microfluidic Devices by Photoinitiated Grafting”, Advanced Functional Materials, Vol. 13 (2003) Pages 264-270.

L. Brown, T. Koerner, J. H. Horton, R. D. Oleschuk, “Fabrication and Characterization of Poly(methylmethacrylate) Microfluidic Devices Bonded using Surface Modifications and Solvents”, Lab Chip, Vol. 6 (2006) Pages 66-73.

J. B. Hutchison, K. T. Haraldsson, B. T. Good, R. P. Sebra, N. Luo, K. S. Anseth, C. N. Bowman, “Robust Polymer Microfluidic Device Fabrication via Contact Liquid Photolithographic Polymerization (CLiPP)”, Lab Chip, Vol. 4 (2004) Pages 658-662.

G. Sui, J. Wang, C. C. Lee, W. Lu, S. P. Lee, J. V. Leyton, A. M. Wu, H. R. Tseng, “Solution-Phase Surface Modification in Intact Poly(dimethylsiloxane) Microfluidic Channels”, Analytical Chemistry, Vol. 78 (2006) Pages 5543-5551.

S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li, N. L. Allbritton, “Surface-Directed, Graft Polymerization within Microfluidic Channels”, Analytical Chemistry, Vol. 76 (2004) Pages 1865-1870.

Y. Berdichevsky, J. Khandurina, A. Guttman, Y. H. Lo, “UV/Ozone Modification of Poly(dimethylsiloxane) Microfluidic Channels”, Sensors and Actuators B, Vol. 97 (2004) Pages 402-408.

S. Lai, X. Cao, L. J. Lee, “A Packaging Technique for Polymer Microfluidic Platforms”, Analytical Chemistry, Vol. 76 (2004) Pages 1175-1183.

J. Liu, T. Pan, A. T. Woolley, M. L. Lee, “Surface-Modified Poly(methylmethacrylate) Capillary Electrophoresis Microchips for Protein and Peptide Analysis”, Analytical Chemistry, Vol. 76 (2004) Pages 6948-6955.

K. C. Popat, R. W. Johnson, T. A. Desai, “Characterization of Vapor Deposited Poly(ethylene glycol) Films on Silicon Surfaces for Surface Modification of Microfluidic Systems”, J. Vac. Sci. Technol. B, Vol. 21 (2003) Pages 645-654.

S. L. Llopis, J. Osiri, S. A. Soper, “Surface Modification of Poly(methyl methacrylate) Microfluidic Devices for High-Resolution Separations of Single-Stranded DNA”, Electrophoresis, Vol. 28 (2007) Pages 984-993.

R. Lin, M. A. Burns, “Surface-Modified Polyolefin Microfluidic Devices for Liquid Handling”, Journal of Micromechanics and Microengineering, Vol. 15 (2005) Pages 2156-2162.

N. Vourdas, A. Tserepi, A. G. Boudouvis, E. Gogolides, “Plasma Processing for Polymeric Microfluidics Fabrication and Surface Modification: Effect of Super-Hydrophobic Walls on Electroosmotic Flow”, Microelectronic Engineering, Vol. 85 (2008) Pages 1124-1127.

J. Steigert, S. Haeberle, T. Brenner, C. Muller, C. P. Steinert, P. Koltay, N. Gottschlich, H. Reinecke, J. Ruhe, R. Zengerle, J. Ducree, “Rapid Prototyping of Microfluidic Chips in COC”, Journal of Micromechanics and Microengineering, Vol. 17 (2007) Pages 333-341.

N. Patrito, C. McCague, P. R. Norton, N. O. Petersen, “Spatially Controlled Cell Adhesion via Micropatterned Surface Modification of Poly(dimethylsiloxane)”, Langmuir, Vol. 23 (2007) Pages 715-719.

A. Muck, A. Svatos, “Chemical Modification of Polymeric Microchip Devices”, Talanta, Vol. 74 (2007) Pages 333-341.

S. Sultana, J. Matsui, M. Mitsuishi, T. Miyashita, “Flow Behavior in Surface-Modified Microchannels with Polymer Nanosheets”, Thin Solid Films, Vol. 518 (2009) Pages 606-609.

J. W. Suk, J. H. Cho, “Capillary Flow Control using Hydrophobic Patterns”, Journal of Micromechanics and Microengineering, Vol. 17 (2007) Pages N11-N15.

S. Mukhopadhyay, J. P. Banerjee, A. Mathur, M. Tweedie, J. A. McLaughlin, S. S. Roy, “Experimental Studies of Surface-Driven Capillary Flow in PMMA Microfluidic Devices Prepared by Direct Bonding Technique and Passive Separation of Microparticles in Microfluidic Laboratory-on-a-Chip Systems”, Surface Review and Letters, Vol. 22 (2015) Page 1550050.

S. Mukhopadhyay, J. P. Banerjee, S. S. Roy, S. K. Metya, M. Tweedie, J. A. McLaughlin, “Effects of Surface Properties on Fluid Engineering Generated by the Surface-Driven Capillary Flow of Water in Microfluidic Lab-on-a-Chip Systems for Bioengineering Applications”, Surface Review and Letters, Vol. 24 (2017) Page 1750041.

S. Mukhopadhyay, “Experimental Investigations on the Surface-Driven Capillary Flow of Aqueous Microparticle Suspensions in the Microfluidic Laboratory-on-a-Chip Systems”, Surface Review and Letters, Vol. 24 (2017) Page 1750107.

S. Mukhopadhyay, “Novel Recording of the Surface-Driven Capillary Flow of Water in a PMMA Microfluidic Device by CMOS Camera”, Research & Reviews: Journal of Physics, Vol. 6, Issue 1 (2017) Pages 16-21.

S. Mukhopadhyay, “Experimental Investigations on the Effects of Channel Aspect Ratio and Surface Wettability to Control the Surface-Driven Capillary Flow of Water in Straight PMMA Microchannels”, Trends in Opto Electro and Optical Communications, Vol. 6, Issue 3 (2016) Pages 1-12.

S. Mukhopadhyay, “Experimental Investigations on the Effects of Surface Modifications to Control the Surface-Driven Capillary Flow of Aqueous Working Liquids in the PMMA Microfluidic Devices”, Advanced Science, Engineering and Medicine, Vol. 9 (2017) Pages 959-970




DOI: https://doi.org/10.37591/toeoc.v10i1.3969

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Trends in Opto-Electro and Optical Communications