Open Access Open Access  Restricted Access Subscription or Fee Access

Catalytic Activity Advancements in Organometallic Chemistry

Abdul Mohamed Sikkander

Abstract


Organometallic chemistry is essential to catalysis and synthesis, helping to shape a wide range of chemical reactions. The study of the interactions between organic compounds and metal elements is known as organometallic chemistry. Modern synthetic chemistry and catalysis have been greatly influenced by the field of organometallic chemistry. It entails the investigation of substances that have metal-carbon bonds because they can have special catalytic and reactive qualities. Applications for these compounds are numerous and include materials science and pharmaceuticals. This multidisciplinary area of chemistry influences the development of many different chemical processes and has a significant impact on both catalysis and synthesis. Frequently used as catalysts in a variety of chemical reactions are organometallic compounds. For instance, transition metal catalysts can speed up reactions by offering a different, lower-activation-energy reaction pathway. Particularly transition metal catalysts, with their capacity to go through several oxidation states and form stable intermediates, are essential for catalyzing a variety of reactions. These catalysts can facilitate the synthesis of complex molecules that may be difficult to obtain through other means, as well as increase reaction rates and selectivity. Organometallic chemistry is still a dynamic field with many applications in different industries and continuous advancements. Selectivity is enhanced and reaction rates are raised as a result. For many industrial processes to be selective and efficient, catalysis is essential. In organic synthesis, organometallic compounds are useful reagents. They can perform a number of transformations that are difficult to accomplish with conventional organic reagents alone, including functionalizing organic molecules, forming and breaking carbon-carbon bonds, and engaging in other transformations. Consequently, the synthetic possibilities in organic chemistry have been greatly expanded by the field of organometallic chemistry. Organic synthesis has been transformed by the adaptability of organometallic compounds in creating and severing bonds as well as their capacity for a variety of transformations. Because of their exceptional reactivity and selectivity, they give chemists access to previously unattainable new molecular structures and compounds. This has significantly changed the field of organic chemistry by adding new tools to the toolbox and creating new opportunities for investigation and learning.

Keywords


Catalytic cycle, Transition metal catalysts, acyclic diene metathesis, Suzuki reaction, Grubbs catalyst

Full Text:

PDF

References


Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev. 2023 Jun 28;123[12]:7692–7760. doi: 10.1021/acs.chemrev.2c00888. Epub 2023 May 10. PMID: 37163671; PMCID: PMC10311463.

Yanting Liu, Dehui Deng, XinheBao,Catalysis for Selected C1 Chemistry,Chem,Volume 6, Issue 10,2020,Pages 2497–2514,ISSN 2451-9294, https://doi.org/10.1016/j.chempr.2020.08.026

Pike SD, Weller AS. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373[2037]:20140187. doi: 10.1098/rsta.2014.0187. PMID: 25666064; PMCID: PMC4342974.

Shugrue CR, Miller SJ. Applications of Nonenzymatic Catalysts to the Alteration of Natural Products. Chem Rev. 2017 Sep 27;117[18]:11894–11951. doi: 10.1021/acs.chemrev.7b00022. Epub 2017 Jun 5. PMID: 28580785; PMCID: PMC5742423.

Ke J, Lee WC, Wang X, Wang Y, Wen X, Zhang XP. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J Am Chem Soc. 2022 Feb 9;144[5]:2368–2378. doi: 10.1021/jacs.1c13154. Epub 2022 Jan 31. PMID: 35099966; PMCID: PMC9032462.

Yuan Y, Lei A. Is electrosynthesis always green and advantageous compared to traditional methods? Nat Commun. 2020 Feb 6;11[1]:802. doi: 10.1038/s41467-020-14322-z. PMID: 32029716; PMCID: PMC7005282.7. Yiram Kim, Chao-Jun Li,Perspectives on green synthesis and catalysis,Green Synthesis and Catalysis,Volume 1, Issue 1,2020,Pages 1-11,ISSN 2666-5549, https://doi.org/10.1016/j.gresc.2020.06.002

Pike SD, Weller AS. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373[2037]:20140187. doi: 10.1098/rsta.2014.0187. PMID: 25666064; PMCID: PMC4342974.

Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. UltrasonSonochem. 2021 Oct;78:105704. doi: 10.1016/j.ultsonch.2021.105704. Epub 2021 Aug 5. PMID: 34454180; PMCID: PMC8406036.

Gasser G, Ott I, Metzler-Nolte N. Organometallic anticancer compounds. J Med Chem. 2011 Jan 13;54[1]:3–25. doi: 10.1021/jm100020w. Epub 2010 Nov 15. PMID: 21077686; PMCID: PMC3018145.

Boros E, Dyson PJ, Gasser G. Classification of Metal-based Drugs According to Their Mechanisms of Action. Chem. 2020 Jan 9;6[1]:41-60. doi: 10.1016/j.chempr.2019.10.013. Epub 2019 Nov 7. PMID: 32864503; PMCID: PMC7451962.

Pike SD, Weller AS. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373[2037]:20140187. doi: 10.1098/rsta.2014.0187. PMID: 25666064; PMCID: PMC4342974.

Wojciech Kiciński, Sławomir Dyjak,Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects,Carbon,Volume 168,2020,Pages 748-845,ISSN 0008-6223, https://doi.org/10.1016/j.carbon.2020.06.004

Jawiczuk, M.; Marczyk, A.; Trzaskowski, B. Decomposition of Ruthenium Olefin Metathesis Catalyst. Catalysts 2020, 10, 887. https://doi.org/10.3390/catal10080887

Zhou T, Malakar S, Webb SL, Krogh-Jespersen K, Goldman AS. Polar molecules catalyze CO insertion into metal-alkyl bonds through the displacement of an agostic C-H bond. Proc Natl Acad Sci U S A. 2019 Feb 26;116[9]:3419-3424. doi: 10.1073/pnas.1816339116. Epub 2019 Feb 12. Erratum in: Proc Natl Acad Sci U S A. 2019 Nov 26;116[48]:24373. PMID: 30755529; PMCID: PMC6397546.

Pike SD, Weller AS. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373[2037]:20140187. doi: 10.1098/rsta.2014.0187. PMID: 25666064; PMCID: PMC4342974.

Fernandes HS, Teixeira CSS, Sousa SF, Cerqueira NMFSA. Formation of Unstable and very Reactive Chemical Species Catalyzed by Metalloenzymes: A Mechanistic Overview. Molecules. 2019 Jul 4;24[13]:2462. doi: 10.3390/molecules24132462. PMID: 31277490; PMCID: PMC6651669.

Schultz DM, Yoon TP. Solar synthesis: prospects in visible light photocatalysis. Science. 2014 Feb 28;343[6174]:1239176. doi: 10.1126/science.1239176. PMID: 24578578; PMCID: PMC4547527.

Hartwig JF. Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature. 2008 Sep 18;455[7211]:314-22. doi: 10.1038/nature07369. PMID: 18800130; PMCID: PMC2819340.

Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers [Basel]. 2020 Nov 30;12[12]:2877. doi: 10.3390/polym12122877. PMID: 33266261; PMCID: PMC7760743.

Bell, E.L., Finnigan, W., France, S.P. et al. Biocatalysis. Nat Rev Methods Primers 1, 46 [2021]. https://doi.org/10.1038/s43586-021-00044-z

Grover, J., Prakash, G., Goswami, N. et al. Traditional and sustainable approaches for the construction of C–C bonds by harnessing C–H arylation. Nat Commun 13, 1085 [2022]. https://doi.org/10.1038/s41467-022-28707-9 23. Jana R, Pathak TP, Sigman MS. Advances in transition metal [Pd, Ni, Fe]-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev. 2011 Mar 9;111[3]:1417-92. doi: 10.1021/cr100327p. Epub 2011 Feb 14. PMID: 21319862; PMCID: PMC3075866.

Pike SD, Weller AS. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species. Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373[2037]:20140187. doi: 10.1098/rsta.2014.0187. PMID: 25666064; PMCID: PMC4342974.

Song, K., Kim, K., Hong, D. et al. Highly active ruthenium metathesis catalysts enabling ring-opening metathesis polymerization of cyclopentadiene at low temperatures. Nat Commun 10, 3860 [2019]. https://doi.org/10.1038/s41467-019-11806-5

Jawiczuk, M.; Marczyk, A.; Trzaskowski, B. Decomposition of Ruthenium Olefin Metathesis Catalyst. Catalysts 2020, 10, 887. https://doi.org/10.3390/catal10080887

Jawiczuk, M.; Marczyk, A.; Trzaskowski, B. Decomposition of Ruthenium Olefin Metathesis Catalyst. Catalysts 2020, 10, 887. https://doi.org/10.3390/catal10080887

Sutthasupa, S., Shiotsuki, M. &Sanda, F. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polym J 42, 905–915 [2010]. https://doi.org/10.1038/pj.2010.94

Lin X, Shi J, Niwayama S. Synthesis of polynorbornadienes by ring-opening metathesis polymerization and their saturated derivatives bearing various ester groups and carboxyl groups. RSC Adv. 2023 Jan 24;13[6]:3494-3504. doi: 10.1039/d2ra07779e. PMID: 36756597; PMCID: PMC9872776.

Schwab, P.; France, M.B.; Ziller, J.W.; Grubbs, R.H. A Series of Well-Defined Metathesis Catalysts–Synthesis of [RuCl2[=CHR′][PR3]2] and Its Reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 2039–2041.

Ma, P.; Zhang, J.; Wu, X.; Wang, J. Ruthenium Metathesis Catalysts with Imidazole Ligands. Catalysts 2023, 13, 276. https://doi.org/10.3390/catal13020276

Lutz Ackermann, Alois Fürstner, Thomas Weskamp, Florian J. Kohl, Wolfgang A. Herrmann,Ruthenium carbene complexes with imidazolin-2-ylidene ligands allow the formation of tetrasubstituted cycloalkenes by RCM,TetrahedronLetters,Volume 40, Issue 26,1999,Pages 4787-4790,ISSN 0040-4039, https://doi.org/10.1016/S0040-4039[99]00919-3

Love JA, Morgan JP, Trnka TM, Grubbs RH. A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. Angew Chem Int Ed Engl. 2002 Nov 4;41[21]:4035-7. doi: 10.1002/1521-3773[20021104]41:21<4035::AID-ANIE4035>3.0.CO;2-I. PMID: 12412073.

Yoon JS, Cena N, Schrodi Y. Robust Olefin Metathesis Catalyst Bearing a Tridentate Hemilabile NHC Ligand. Organometallics. 2020 Mar 9;39[5]:631-635. doi: 10.1021/acs.organomet.9b00804. Epub 2020 Feb 14. PMID: 35418721; PMCID: PMC9004600.

Vougioukalakis GC, Grubbs RH. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem Rev. 2010 Mar 10;110[3]:1746-87. doi: 10.1021/cr9002424. PMID: 20000700.

Samojłowicz C, Bieniek M, Grela K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem Rev. 2009 Aug;109[8]:3708-42. doi: 10.1021/cr800524f. PMID: 19534492.

Lozano-Vila AM, Monsaert S, Bajek A, Verpoort F. Ruthenium-based olefin metathesis catalysts derived from alkynes. Chem Rev. 2010 Aug 11;110[8]:4865-909. doi: 10.1021/cr900346r. PMID: 20392041.

Higman, C.S.; Lummiss, J.A.M.; Fogg, D.E. Olefin Metathesis at the Dawn of Implementation in Pharmaceutical and Specialty-Chemicals Manufacturing. Angew. Chem. Int. Ed. 2016, 55, 3552–3565.

Toh RW, Patrzałek M, Nienałtowski T, Piątkowski J, Kajetanowicz A, Wu J, Grela K. Olefin Metathesis in Continuous Flow Reactor Employing Polar Ruthenium Catalyst and Soluble Metal Scavenger for Instant Purification of Products of Pharmaceutical Interest. ACS Sustain Chem Eng. 2021 Dec 6;9[48]:16450-16458. doi: 10.1021/acssuschemeng.1c06522. Epub 2021 Nov 22. PMID: 34900446; PMCID: PMC8655794.

Blanco CO, Fogg DE. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS Catal. 2023 Jan 3;13[2]:1097-1102. doi: 10.1021/acscatal.2c05573. PMID: 36714054; PMCID: PMC9872090.

Grzesiński Ł, Milewski M, Nadirova M, Kajetanowicz A, Grela K. Unexpected Latency of Z-Stereoretentive Ruthenium Olefin Metathesis Catalysts Bearing Unsymmetrical N-heterocyclic Carbene or Cyclic[alkyl][amino]carbene Ligands. Organometallics. 2022 Nov 2;42[18]:2453-2459. doi: 10.1021/acs.organomet.2c00428. PMID: 37772273; PMCID: PMC10526643.

Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Helal CJ, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved During 2017. J Med Chem. 2019 Aug 22;62[16]:7340-7382. doi: 10.1021/acs.jmedchem.9b00196. Epub 2019 Apr 15. PMID: 30939001.

Patrzałek, M.; Zasada, A.; Kajetanowicz, A.; Grela, K. Tandem Olefin Metathesis/α-Ketohydroxylation Revisited. Catalysts 2021, 11, 719. https://doi.org/10.3390/catal11060719

Montgomery, T.P.; Johns, A.M.; Grubbs, R.H. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts. Catalysts 2017, 7, 87. https://doi.org/10.3390/catal7030087

Chikkali S, Mecking S. Refining of plant oils to chemicals by olefin metathesis. Angew Chem Int Ed Engl. 2012 Jun 11;51[24]:5802-8. doi: 10.1002/anie.201107645. Epub 2012 May 13. PMID: 22581523.

Paradiso, V.; Contino, R.; Grisi, F. NHC Ligand Effects on Ru-Catalyzed Cross-Metathesis of Renewable Materials. Catalysts 2020, 10, 904. https://doi.org/10.3390/catal10080904

Vignon P, Vancompernolle T, Couturier JL, Dubois JL, Mortreux A, Gauvin RM. Cross-metathesis of biosourced fatty acid derivatives: a step further toward improved reactivity. ChemSusChem. 2015 Apr 13;8[7]:1143-6. doi: 10.1002/cssc.201403170. Epub 2014 Dec 3. PMID: 25469823.

Gaspar B, Carreira EM. Catalytic hydrochlorination of unactivated olefins with para-toluenesulfonyl chloride. Angew Chem Int Ed Engl. 2008;47[31]:5758-60. doi: 10.1002/anie.200801760. PMID: 18576460.

Jawiczuk, M.; Marczyk, A.; Trzaskowski, B. Decomposition of Ruthenium Olefin Metathesis Catalyst. Catalysts 2020, 10, 887. https://doi.org/10.3390/catal10080887

Becker MR, Watson RB, Schindler CS. Beyond olefins: new metathesis directions for synthesis. Chem Soc Rev. 2018 Oct 29;47[21]:7867-7881. doi: 10.1039/c8cs00391b. PMID: 30335106; PMCID: PMC6905380.

Haque, T.; Nomura, K. Acyclic Diene Metathesis [ADMET] Polymerization for Precise Synthesis of Defect-Free Conjugated Polymers with Well-Defined Chain Ends. Catalysts 2015, 5, 500-517. https://doi.org/10.3390/catal5020500

Rogalski, S.; Pietraszuk, C. Application of Olefin Metathesis in the Synthesis of Carbo- and Heteroaromatic Compounds—Recent Advances. Molecules 2023, 28, 1680. https://doi.org/10.3390/molecules28041680

Song, K., Kim, K., Hong, D. et al. Highly active ruthenium metathesis catalysts enabling ring-opening metathesis polymerization of cyclopentadiene at low temperatures. Nat Commun 10, 3860 [2019]. https://doi.org/10.1038/s41467-019-11806-5

Matsuo, T. Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021, 11, 359. https://doi.org/10.3390/catal11030359

Chołuj, A.; Nogaś, W.; Patrzałek, M.; Krzesiński, P.; Chmielewski, M.J.; Kajetanowicz, A.; Grela, K. Preparation of Ruthenium Olefin Metathesis Catalysts Immobilized on MOF, SBA-15, and 13X for Probing Heterogeneous Boomerang Effect. Catalysts 2020, 10, 438. https://doi.org/10.3390/catal10040438

Groso EJ, Schindler CS. Recent advances in the application of ring-closing metathesis for the synthesis of unsaturated nitrogen heterocycles. Synthesis [Stuttg]. 2019 Mar;51[5]:1100-1114. doi: 10.1055/s-0037-1611651. Epub 2019 Feb 8. PMID: 31983781; PMCID: PMC6983305.

Ogba OM, Warner NC, O'Leary DJ, Grubbs RH . Recent advances in ruthenium-based olefin metathesis. Chem Soc Rev. 2018 Jun 18;47[12]:4510-4544. doi: 10.1039/c8cs00027a. PMID: 29714397; PMCID: PMC6107346.

Montgomery, T.P.; Johns, A.M.; Grubbs, R.H. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts. Catalysts 2017, 7, 87. https://doi.org/10.3390/catal7030087

Buskes MJ, Blanco MJ. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules. 2020 Jul 31;25[15]:3493. doi: 10.3390/molecules25153493. PMID: 32751973; PMCID: PMC7436090.

Martin R, Buchwald SL. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res. 2008 Nov 18;41[11]:1461-73. doi: 10.1021/ar800036s. PMID: 18620434; PMCID: PMC2645945.

Suzuki A. Organoborane coupling reactions [Suzuki coupling]. Proc JpnAcad Ser B Phys Biol Sci. 2004 Aug;80[8]:359–71. Epub 2004 Aug 1. PMCID: PMC8153654.

Nicolaou KC, Bulger PG, Sarlah D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Ed Engl. 2005 Jul 18;44[29]:4442-89. doi: 10.1002/anie.200500368. PMID: 15991198.

Jagtap, S. Heck Reaction—State of the Art. Catalysts 2017, 7, 267. https://doi.org/10.3390/catal7090267

Jana R, Pathak TP, Sigman MS. Advances in transition metal [Pd, Ni, Fe]-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem Rev. 2011 Mar 9;111[3]:1417-92. doi: 10.1021/cr100327p. Epub 2011 Feb 14. PMID: 21319862; PMCID: PMC3075866.

Campeau LC, Hazari N. Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics. 2019 Jan 14;38[1]:3-35. doi: 10.1021/acs.organomet.8b00720. Epub 2018 Nov 27. PMID: 31741548; PMCID: PMC6860378.

Sultan S, Shah BA. Carbon-Carbon and Carbon-Heteroatom Bond Formation Reactions Using Unsaturated Carbon Compounds. Chem Rec. 2019 Feb;19[2-3]:644-660. doi: 10.1002/tcr.201800095. Epub 2018 Oct 1. PMID: 30276948.

Cui X, Huang Z, van Muyden AP, Fei Z, Wang T, Dyson PJ. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1[111] facets. Sci Adv. 2020 Jul 1;6[27]:eabb3831. doi: 10.1126/sciadv.abb3831. PMID: 32937440; PMCID: PMC7458463.

Kefeng Xie, Kai Xu, Mingqiang Liu, Xiaohong Song, Shengyuan Xu, HuayanSi,Catalysts for selective hydrogenation of acetylene: A review,Materials Today Catalysis,Volume 3,2023,100029,ISSN 2949-754X, https://doi.org/10.1016/j.mtcata.2023.100029

Baráth, E. Hydrogen Transfer Reactions of Carbonyls, Alkynes, and Alkenes with Noble Metals in the Presence of Alcohols/Ethers and Amines as Hydrogen Donors. Catalysts 2018, 8, 671. https://doi.org/10.3390/catal8120671

Baráth, E. Hydrogen Transfer Reactions of Carbonyls, Alkynes, and Alkenes with Noble Metals in the Presence of Alcohols/Ethers and Amines as Hydrogen Donors. Catalysts 2018, 8, 671. https://doi.org/10.3390/catal8120671

Maresz, K.; Ciemięga, A.; Mrowiec-Białoń, J. Selective Reduction of Ketones and Aldehydes in Continuous-Flow Microreactor—Kinetic Studies. Catalysts 2018, 8, 221. https://doi.org/10.3390/catal8050221

Iglesias, J.; Melero, J.A.; Morales, G.; Moreno, J.; Segura, Y.; Paniagua, M.; Cambra, A.; Hernández, B. Zr-SBA-15 Lewis Acid Catalyst: Activity in MeerweinPonndorf Verley Reduction. Catalysts 2015, 5, 1911-1927. https://doi.org/10.3390/catal5041911

Liautard, V.; Birepinte, M.; Bettoli, C.; Pucheault, M. Mg-Catalyzed OPPenauer Oxidation—Application to the Flow Synthesis of a Natural Pheromone. Catalysts 2018, 8, 529. https://doi.org/10.3390/catal8110529

Boit TB, Mehta MM, Garg NK. Base-Mediated Meerwein-Ponndorf-Verley Reduction of Aromatic and Heterocyclic Ketones. Org Lett. 2019 Aug 16;21[16]:6447-6451. doi: 10.1021/acs.orglett.9b02342. Epub 2019 Jul 22. PMID: 31329452; PMCID: PMC7193670.

Campbell EJ, Zhou H, Nguyen ST. Catalytic Meerwein-Pondorf-Verley reduction by simple aluminum complexes. Org Lett. 2001 Jul 26;3[15]:2391-3. doi: 10.1021/ol0162116. PMID: 11463324.

Boit TB, Mehta MM, Garg NK. Base-Mediated Meerwein-Ponndorf-Verley Reduction of Aromatic and Heterocyclic Ketones. Org Lett. 2019 Aug 16;21[16]:6447-6451. doi: 10.1021/acs.orglett.9b02342. Epub 2019 Jul 22. PMID: 31329452; PMCID: PMC7193670.

Boit TB, Mehta MM, Garg NK. Base-Mediated Meerwein-Ponndorf-Verley Reduction of Aromatic and Heterocyclic Ketones. Org Lett. 2019 Aug 16;21[16]:6447-6451. doi: 10.1021/acs.orglett.9b02342. Epub 2019 Jul 22. PMID: 31329452; PMCID: PMC7193670.

Nishide K, Node M. Recent development of asymmetric syntheses based on the Meerwein-Ponndorf-Verley reduction. Chirality. 2002 Nov;14[10]:759-67. doi: 10.1002/chir.10142. PMID: 12395393.

Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal. 2021 May 7;11[9]:5572-5585. doi: 10.1021/acscatal.1c01109. Epub 2021 Apr 22. PMID: 34306816; PMCID: PMC8302072.

Mabate, T.P., Maqunga, N.P., Ntshibongo, S. et al. Metal oxides and their roles in heterogeneous catalysis: special emphasis on synthesis protocols, intrinsic properties, and their influence in transfer hydrogenation reactions. SN Appl. Sci. 5, 196 [2023]. https://doi.org/10.1007/s42452-023-05416-6

Argyle, M.D.; Bartholomew, C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5, 145-269. https://doi.org/10.3390/catal5010145

Pavel, M.; Anastasescu, C.; State, R.-N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380. https://doi.org/10.3390/catal13020380

Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev. 2023 Jun 28;123[12]:7692-7760. doi: 10.1021/acs.chemrev.2c00888. Epub 2023 May 10. PMID: 37163671; PMCID: PMC10311463.

Shul’pin, G.B. New Trends in Oxidative Functionalization of Carbon–Hydrogen Bonds: A Review. Catalysts 2016, 6, 50. https://doi.org/10.3390/catal6040050

Dalton T, Faber T, Glorius F. C-H Activation: Toward Sustainability and Applications. ACS Cent Sci. 2021 Feb 24;7[2]:245-261. doi: 10.1021/acscentsci.0c01413. Epub 2021 Feb 2. PMID: 33655064; PMCID: PMC7908034.

Carvalho RL, de Miranda AS, Nunes MP, Gomes RS, Jardim GAM, Júnior ENDS. On the application of 3d metals for C-H activation toward bioactive compounds: The key step for the synthesis of silver bullets. Beilstein J Org Chem. 2021 Jul 30;17:1849-1938. doi: 10.3762/bjoc.17.126. PMID: 34386103; PMCID: PMC8329403.

Malinowski J, Zych D, Jacewicz D, Gawdzik B, Drzeżdżon J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry-A Review. Int J Mol Sci. 2020 Jul 30;21[15]:5443. doi: 10.3390/ijms21155443. PMID: 32751682; PMCID: PMC7432526.

Moccia F, Rigamonti L, Messori A, Zanotti V, Mazzoni R. Bringing Homogeneous Iron Catalysts on the Heterogeneous Side: Solutions for Immobilization. Molecules. 2021 May 6;26[9]:2728. doi: 10.3390/molecules26092728. PMID: 34066456; PMCID: PMC8124704.

Martin R, Buchwald SL. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res. 2008 Nov 18;41[11]:1461-73. doi: 10.1021/ar800036s. PMID: 18620434; PMCID: PMC2645945.

Murugesan K, Wei Z, Chandrashekhar VG, Neumann H, Spannenberg A, Jiao H, Beller M, Jagadeesh RV. Homogeneous cobalt-catalyzed reductive amination for synthesis of functionalized primary amines. Nat Commun. 2019 Nov 29;10[1]:5443. doi: 10.1038/s41467-019-13351-7. PMID: 31784518; PMCID: PMC6884468.

Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev. 2020 Oct 28;120[20]:11479-11615. doi: 10.1021/acs.chemrev.0c00523. Epub 2020 Sep 24. PMID: 32969640; PMCID: PMC8006536.

Halpern J, Trost BM. Asymmetric Catalysis. Proc Natl Acad Sci U S A. 2004 Apr 13;101[15]:5347. doi: 10.1073/pnas.0401811101. PMID: 15082833; PMCID: PMC397383.

Mushtaq, A.; Zahoor, A.F.; Bilal, M.; Hussain, S.M.; Irfan, M.; Akhtar, R.; Irfan, A.; Kotwica-Mojzych, K.; Mojzych, M. Sharpless Asymmetric Dihydroxylation: An Impressive Gadget for the Synthesis of Natural Products: A Review. Molecules 2023, 28, 2722. https://doi.org/10.3390/molecules28062722

Ötvös SB, Kappe CO. Continuous flow asymmetric synthesis of chiral active pharmaceutical ingredients and their advanced intermediates. Green Chem. 2021 Aug 3;23[17]:6117-6138. doi: 10.1039/d1gc01615f. PMID: 34671222; PMCID: PMC8447942.

Arevalo R, Chirik PJ. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. J Am Chem Soc. 2019 Jun 12;141[23]:9106-9123. doi: 10.1021/jacs.9b03337. Epub 2019 May 28. PMID: 31084022; PMCID: PMC6561843.

Falconer RL, Nichol GS, Smolyar IV, Cockroft SL, Cowley MJ. Reversible Reductive Elimination in Aluminum[II] Dihydrides. Angew Chem Int Ed Engl. 2021 Jan 25;60[4]:2047-2052. doi: 10.1002/anie.202011418. Epub 2020 Nov 24. PMID: 33022874; PMCID: PMC7894477.

Zarkadoulas, A.; Zgouleta, I.; Tzouras, N.V.; Vougioukalakis, G.C. Traceless Directing Groups in Sustainable Metal-Catalyzed C–H Activation. Catalysts 2021, 11, 554. https://doi.org/10.3390/catal11050554

Cadierno, V. Recent Advances in Organometallic Chemistry and Catalysis. Catalysts 2021, 11, 646. https://doi.org/10.3390/catal11050646

Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics [Transition Metal-Metalloid Complexes] and Catalysis. Chem Rev. 2022 Feb 9;122[3]:3996-4090. doi: 10.1021/acs.chemrev.1c00417. Epub 2021 Dec 30. PMID: 34967210; PMCID: PMC8832401.

Malinowski J, Zych D, Jacewicz D, Gawdzik B, Drzeżdżon J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry-A Review. Int J Mol Sci. 2020 Jul 30;21[15]:5443. doi: 10.3390/ijms21155443. PMID: 32751682; PMCID: PMC7432526.

Palma, V.; Barba, D.; Cortese, M.; Martino, M.; Renda, S.; Meloni, E. Microwaves and Heterogeneous Catalysis: A Review on Selected Catalytic Processes. Catalysts 2020, 10, 246. https://doi.org/10.3390/catal10020246

Young RJ, Huxley MT, Pardo E, Champness NR, Sumby CJ, Doonan CJ. Isolating reactive metal-based species in Metal-Organic Frameworks - viable strategies and opportunities. Chem Sci. 2020 Mar 25;11[16]:4031-4050. doi: 10.1039/d0sc00485e. PMID: 34122871; PMCID 103. Moahamed Sikkander A, Manisankar P, Vedhi C Utilization of sodium montmorillonite clay for enhanced electrochemical sensing of amlodipine,Indian Journal of Chemistry-Section A[IJCA] 55 [5], 571-575.DOI: 10.56042/ijca.v55i5.11669.

Sivakumar, R GopalakrishnanP, Abdul RazakMS,Comparative analysis of anti-reflection coatings on solar PV cells through TiO2 and SiO2 nanoparticles,Pigment & Resin Technology 51 [2], 171-177. https://doi.org/10.1108/PRT-08-2020-0084

Mohamed Sikkander A, Nasri NS., Review on Inorganic Nano crystals unique benchmark of Nanotechnology,Moroccan Journal of Chemistry 1 [2], 1-2 [2013] 47-54.https://doi.org/10.48317/IMIST.PRSM/morjchem-v1i2.1892

Mohamed Sikkander A., Bassyouni F, Yasmeen K, Mishra S.R, Lakshmi V.V. Synthesis of Zinc Oxide and Lead Nitrate Nanoparticles and their Applications: Comparative Studies of Bacterial and Fungal [E. coli, A. Niger]. J. Appl. Organomet. Chem., 2023, 3[4], 255-267. https://doi.org/10.48309/JAOC.2023.415886.1115




DOI: https://doi.org/10.37591/jocc.v10i2.7804

Refbacks

  • There are currently no refbacks.