Open Access Open Access  Restricted Access Subscription or Fee Access

Integrated Microfluidic Platform for Accelerated Catalytic Analysis: Enhancing Sensitivity and Efficiency

Neha Sahu, Dr. Rizwan Arif

Abstract


In this study, we introduce a groundbreaking advancement in microfluidic technology tailored for catalytic and catalytic analysis. Our innovative microfluidic device integrates novel features aimed at augmenting sensitivity and accelerating analysis while ensuring reliability and user-friendliness. The hallmark of our device is the fusion of sample preparation and analysis functionalities within the microfluidic chip. By embedding sample preconcentration and purification modules, we achieve remarkable enhancements in sensitivity and detection limits. Moreover, our device boasts optimized flow control mechanisms and reaction chambers meticulously crafted for swift and efficient chemical reactions. Through rigorous experimentation across various analytes, encompassing small molecules, proteins, and nucleic acids, we unequivocally demonstrate the device's prowess in enabling rapid detection with unparalleled sensitivity. This technological breakthrough holds immense promise for catalytic and catalytic applications across diverse domains, spanning environmental monitoring, clinical diagnostics, and pharmaceutical analysis. By consolidating sample preparation and analysis in a single, streamlined device, our work streamlines and expedites intricate analytical workflows. Microfluidic devices have fundamentally transformed catalytic and catalytic analysis by furnishing compact platforms capable of executing intricate assays with minimal sample volumes. Our study not only unveils a novel microfluidic device but also delineates a paradigm shift in catalytic and catalytic analysis methodologies.


Keywords


Microfluidic devices, Plasmonic nanoparticles, Point-of-care, Environmental monitoring.

Full Text:

PDF

References


Bacheva, V.; Paratore, F.; Rubin, S.; Kaigala, G. V.; Bercovici, M. Tunable Bidirectional Electroosmotic Flow for Diffusion-Based Separations. Angew. Chem., Int. Ed. 2020, 59 (31), 12894– 12899, DOI: 10.1002/anie.201916699

Gumuscu, B.; Herr, A. E. Separation-Encoded Microparticles for Single-Cell Western Blotting. Lab Chip 2020, 20 (1), 64– 73, DOI: 10.1039/C9LC00917E

Zandi Shafagh, R.; Decrop, D.; Ven, K.; Vanderbeke, A.; Hanusa, R.; Breukers, J.; Pardon, G.; Haraldsson, T.; Lammertyn, J.; van der Wijngaart, W. Reaction Injection Molding of Hydrophilic-in-Hydrophobic Femtolitre-Well Arrays. Microsystems Nanoeng. 2019, 5 (1), 25, DOI: 10.1038/s41378-019-0065-2

Nan, L.; Lai, M. Y. A.; Tang, M. Y. H.; Chan, Y. K.; Poon, L. L. M.; Shum, H. C. On-Demand Droplet Collection for Capturing Single Cells. Small 2020, 16 (9), 1902889, DOI: 10.1002/smll.201902889

Saucedo-Espinosa, M. A.; Dittrich, P. S. In-Droplet Electrophoretic Separation and Enrichment of Biomolecules. Anal. Chem. 2020, 92 (12), 8414– 8421, DOI: 10.1021/acs.analchem.0c01044

View

Kim, S.; Ganapathysubramanian, B.; Anand, R. K. Concentration Enrichment, Separation, and Cation Exchange in Nanoliter-Scale Water-in-Oil Droplets. J. Am. Chem. Soc. 2020, 142 (6), 3196– 3204, DOI: 10.1021/jacs.9b13268

Ozer, T.; McMahon, C.; Henry, C. S. Advances in Paper-Based Analytical Devices. Annu. Rev. Anal. Chem. 2020, 13 (1), 85– 109, DOI: 10.1146/annurev-anchem-061318-114845

Paik, S.; Kim, G.; Chang, S.; Lee, S.; Jin, D.; Jeong, K. Y.; Lee, I. S.; Lee, J.; Moon, H.; Lee, J.; Chang, K.; Choi, S. S.; Moon, J.; Jung, S.; Kang, S.; Lee, W.; Choi, H. J.; Choi, H.; Kim, H. J.; Lee, J. H.; Cheon, J.; Kim, M.; Myoung, J.; Park, H. G.; Shim, W. Near-Field Sub-Diffraction Photolithography with an Elastomeric Photomask. Nat. Commun. 2020, 11 (1), 1– 13, DOI: 10.1038/s41467-020-14439-1

Sonmez, U. M.; Coyle, S.; Taylor, R. E.; LeDuc, P. R. Polycarbonate Heat Molding for Soft Lithography. Small 2020, 16 (16), 2000241, DOI: 10.1002/smll.202000241

Zhu, J.; Zhang, Q.; Yang, T.; Liu, Y.; Liu, R. 3D Printing of Multi-Scalable Structures via High Penetration near-Infrared Photopolymerization. Nat. Commun. 2020, 11 (1), 1– 7, DOI: 10.1038/s41467-020-17251-z

Day, J. H.; Nicholson, T. M.; Su, X.; Van Neel, T. L.; Clinton, I.; Kothandapani, A.; Lee, J.; Greenberg, M. H.; Amory, J. K.; Walsh, T. J.; Muller, C. H.; Franco, O. E.; Jefcoate, C. R.; Crawford, S. E.; Jorgensen, J. S.; Theberge, A. B. Injection Molded Open Microfluidic Well Plate Inserts for User-Friendly Coculture and Microscopy. Lab Chip 2020, 20 (1), 107– 119, DOI: 10.1039/C9LC00706G

Liu, J.; Ye, L.; Sun, Y.; Hu, M.; Chen, F.; Wegner, S.; Mailänder, V.; Steffen, W.; Kappl, M.; Butt, H. J. Elastic Superhydrophobic and Photocatalytic Active Films Used as Blood Repellent Dressing. Adv. Mater. 2020, 32 (11), 1908008, DOI: 10.1002/adma.201908008

Piironen, K.; Haapala, M.; Talman, V.; Järvinen, P.; Sikanen, T. Cell Adhesion and Proliferation on Common 3D Printing Materials Used in Stereolithography of Microfluidic Devices. Lab Chip 2020, 20 (13), 2372– 2382, DOI: 10.1039/D0LC00114G

Xiang, N.; Li, Q.; Ni, Z. Combining Inertial Microfluidics with Cross-Flow Filtration for High-Fold and High-Throughput Passive Volume Reduction. Anal. Chem. 2020, 92 (9), 6770– 6776, DOI: 10.1021/acs.analchem.0c01006

Etienne, M.; Le, T. X. H.; Nasir, T.; Herzog, G. Electrochemical Filter to Remove Oxygen Interference Locally, Rapidly, and Temporarily for Sensing Applications. Anal. Chem. 2020, 92 (11), 7425– 7429, DOI: 10.1021/acs.analchem.0c00395

Peli Thanthri, S. H.; Ward, C. L.; Cornejo, M. A.; Linz, T. H. Simultaneous Preconcentration and Separation of Native Protein Variants Using Thermal Gel Electrophoresis. Anal. Chem. 2020, 92 (9), 6741– 6747, DOI: 10.1021/acs.analchem.0c00876

Jeeawoody, S.; Yamauchi, K. A.; Su, A.; Herr, A. E. Laterally Aggregated Polyacrylamide Gels for Immunoprobed Isoelectric Focusing. Anal. Chem. 2020, 92 (4), 3180– 3188, DOI: 10.1021/acs.analchem.9b04913

Hung, S. T.; Mukherjee, S.; Jimenez, R. Enrichment of Rare Events Using a Multi-Parameter High Throughput Microfluidic Droplet Sorter. Lab Chip 2020, 20 (4), 834– 843, DOI: 10.1039/C9LC00790C

Nelson, A. Z.; Kundukad, B.; Wong, W. K.; Khan, S. A.; Doyle, P. S. Embedded Droplet Printing in Yield-Stress Fluids. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (11), 5671– 5679, DOI: 10.1073/pnas.1919363117

Zandi Shafagh, R.; Decrop, D.; Ven, K.; Vanderbeke, A.; Hanusa, R.; Breukers, J.; Pardon, G.; Haraldsson, T.; Lammertyn, J.; van der Wijngaart, W. Reaction Injection Molding of Hydrophilic-in-Hydrophobic Femtolitre-Well Arrays. Microsystems Nanoeng. 2019, 5 (1), 25, DOI: 10.1038/s41378-019-0065-2.


Refbacks

  • There are currently no refbacks.