Open Access Open Access  Restricted Access Subscription or Fee Access

Thermoplastic-Recycling and Usage of Nano Additives: An Overview

Sandeep Rai, Akhilesh Kumar Gupta, Nikitra Nihal Chand Gupta, Amit Kumar Yadav, Manohar Joshi

Abstract


This review briefly describes the chemistry and usage of different types of nano additives especially in thermoplastic materials. Thermoplastics are very widely used in automobile, aerospace and other industries. However, such increased usage is creating serious disposal problems due to their non-biodegradable nature.  Review discusses, various recycling technologies currently in practice. All in all, review also report the current global market scenario of nano additives consumption and their possible future applications in polymer industries & estimated/projected usage in years to come.


Keywords


Thermoplastic, nano additives, polymer nano composites, Graphene Oxide, Automobile components

Full Text:

PDF

References


Kumar, Varandani, Mehta, et al. Fast response and recovery of hydrogen sensing in Pd–Pt nanoparticle–graphene composite layers. Nanotechnology. 2011; 22.

Ragaert, Delva, Geem,. Mechanical and chemical recycling of solid plastic waste. Waste Management.2017; 69: 24-58.

M. Solis, S. Silveira. Technologies for chemical recycling of household plastics– A technical review and TRL assessment. Waste Management. 2020; 105: 128-138

Singh, N., Hui, D., Singh, R., et.al. Recycling of plastic solid waste: a state of art review and future applications. Compos. Part B Eng. 2017; 115: 409-422. https://doi.org/10.1016/j.

compositesb.2016.09.013.

Milena Riedl. (2019). Automotive Thermoplastics: 5 current challenges and how to solve them[online]. Available from https://ta-netzsch.com/automotive-thermoplastics-5-current-challenges-how-to-solve-them

Maier R.D., Schiller M. Handbuch Kunststoff Additive. 4., vollständig neu bearbeitete Auflage. 4th ed. Germany: Hanser; 2016.

Greßler S., Gazsó A. (2016). Surface-modified nanoparticles - Part I: Types of modification, production, use (NanoTrust-Dossier No. 46)[online]. Available from http://epub.oeaw.ac.at/0xc-1aa5576_0x0033efea.pdf

Gressler S., Part F., Gazsó A., et.al. (2018): Nanotechnological Applications for Food Contact Materials. NanoTrust-Dossier no. 049en[online]. Available from https://epub.oeaw.ac.at/?arp=0x003918dd

Langner R., Kohlhoff J., Grüne M. et.al. Material trends: layered silicate polymer nanocomposites. Materials in Manufacturing. 2011; 6.

DaNa - Information on the safety of new, innovative materials and nanomaterials (BMBF - 03XP0282).

Paul D.R., Robeson L.M. Polymer nanotechnology: Nanocomposites. Polymer. 2008; 49 (15): 3187-3204.

Environment Canada, Health Canada (2013). Carbon Black: Screening Assessment for the Challenge[online]. Available from https://www.canada.ca/en/health-canada/services/chemical-substances/challenge/batch-12/carbon-black.html

Kocher B., Brose S., Feix J., et.al. (2010). Stoffeinträge in den Straßenseitenraum–Reifenabrieb [online]. Available from https://bast.opus.hbz-nrw.de/opus45-bast/frontdoor/deliver/index/docId/

/file/V188.pdf

Wohlleben W., Meyer J., Muller J., et.al. Release from nanomaterials during their use phase: combined mechanical and chemical stresses applied to simple and multi-filler nanocomposites mimicking wear of nano-reinforced tires. Environmental Science: Nano. 2016; 3: 1036-1051

Duncan T.V. Release of engineered nanomaterials from polymer nanocomposites: the effect of matrix degradation. ACS Applied Materials & Interfaces. 2015; 7 (1): 20-39

Gressler S., Fries R., Simkó M. (2012). Carbon Nanotubes–Part I: Introduction, Production, Areas of Application: NanoTrust Dossier [online]. Available from http://epub.oeaw.ac.at/0xc1aa

_0x002aa3bf.pdf

Brandt H. (2017). Kohlenstoffbasierte Nanokomposite für Strukturanwendungen: Europäische Sicherheit und Technik[online]. Available from https://www.int.fraunhofer.de/content/dam/int/de/

documents/EST/EST-0717-Kohlenstoffbasierte-Nanokomposite-fuer-Strukturanwendungen.pdf

Gressler S. & Nentwich M. (2012). Nano and Environment–Part II: Hazard potentials and risks: NanoTrust Dossier[online]. Available from http://epub.oeaw.ac.at/0xc1aa5576_0x002acc9d.pdf

Kotsilkov S., Ivanov E., Vitanov N.K. Release of Graphene and Carbon Nanotubes from Biodegradable Poly (Lactic Acid) Films during Degradation and Combustion: Risk Associated with the End-of-Life of Nanocomposites Food Packaging Materials. Materials. 2018; 11(12): 2346

Salieri B., Turner D.A., Nowack B. et al. Life cycle assessment of manufactured nanomaterials: Where are we? NanoImpact. 2018; 10: 108-120

Directive 2003/11/EC of the European Parliament and of the Council of 6 February 2003 amending for the 24th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether, octabromodiphenyl ether)

Li X., Liu W., Sun L., et.al. Resin Composites Reinforced by Nanoscaled Fibers or Tubes for Dental Regeneration. BioMed Research International. 2014; 13(Special Issue).

Mautner A. (2016). Green Materials–Nanocellulose. Polymere. Plus Lucis [online]. Available from https://www.pluslucis.org/ZeitschriftenArchiv/2016-1_PL.pdf

Stoudmann N., Nowack B. Som C. Prospective environment risk assessment of nanocellulose for Europe. Environ. Sci.: Nano. 2019; 6:2520-2531

Intrado Globe news wire. (February 20, 2020). Polymer Nanocomposites Market Size Hit US$ 31.8 Bn By 2026[online]. Available from https://www.globenewswire.com/news-release/2020/02/20/1988215/0/en/Polymer-Nanocomposites-Market-Size-Hit-US-31-8-Bn-By-2026.html


Refbacks

  • There are currently no refbacks.