Open Access Open Access  Restricted Access Subscription or Fee Access

Solution of Different Problems Related to Active Power Filter Design Using Python

Sumiran Gupta, R.S. Mandloi, Sandeep Bhongade



There are a variety of problems that lead to problems of rising losses and degradation in power quality in AC due to harmonic distortions, voltage sag, voltage spike, flicker, voltage swell, voltage fluctuations, noise and voltage imbalance. In this paper, different problems are analysed and based on their circuit type, input and output value of voltage and current VSI circuit is designed to increase performance in the system. In AC mains, it has been discovered that the series APF protects sensitive loads from these disturbances. It reduces voltage harmonics, resulting in a nearly pure sinusoidal supply voltage. In this work, techniques are developed using Python and its modules, and they are used to solve issues and achieve the desired results. These methods may be used to obtain the desired outcomes using a variety of inputs.


Active Power Filter, Power Quality, Harmonic Voltage Technique

Full Text:



Awad, H., Svensson, J., & Bollen, M. H. J. (n.d.). Static series compensator for voltage dips mitigation. 2003 IEEE Bologna Power Tech Conference Proceedings, doi:10.1109/ptc.2003.1304423

Singh, B., & Verma, V. (n.d.). A new control scheme of series active filter for varying rectifier loads. The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003. doi:10.1109/peds.2003.1282900

Mohammadzadeh, A., Fermanzadeh, P., & Azizian, M. (2010). An improved vector-controlled CSI-fed induction motor drive using an active filter. 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC). doi:10.1109/pedstc.2010.5471829

Shehada, A., & Beig, A. R. (2013). An improved CSI fed induction motor drive. International Journal of Electrical Power & Energy Systems, 46, 26–35. Doi: 10.1016/j.ijepes.2012.10.006

Acikgoz, H., Kececioglu, O. F., Gani, A., Yildiz, C., & Sekkeli, M. (2016). Improved control configuration of PWM rectifiers based on neuro-fuzzy controller. SpringerPlus, 5(1). doi:10.1186/s40064-016-2781-5

Bhattacharya, S., Divan, D. M., & Banerjee, B. B. (n.d.). Control and reduction of terminal voltage total harmonic distortion (THD) in a hybrid series active and parallel passive filter system. Proceedings of IEEE Power Electronics Specialist Conference - PESC ’93. doi:10.1109/pesc.1993.472012

Qun Wang, Weizheng Yao, Jinjun Liu, & Zhaoan Wang. (n.d.). Voltage type harmonic source and series active power filter adopting new control approach. IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029). doi:10.1109/iecon.1999.816513

Bhim Singh, Ambrish Chandra, Kamal Al-Haddad (2015). POWER QUALITY PROBLEMS AND MITIGATION TECHNIQUES, John Wiley and Sons, UK

Paul, P. J. (2011). Shunt Active and Series Active Filters-Based Power Quality Conditioner for Matrix Converter. Advances in Power Electronics, 2011, 1–9. doi:10.1155/2011/930196.

Fujita, H., & Akagi, H. (1991). A practical approach to harmonic compensation in power systems-series connection of passive and active filters. IEEE Transactions on Industry Applications, 27(6), 1020–1025. doi:10.1109/28.108451

Bouafia, A., Gaubert, J.-P., & Krim, F. (2010). Design and implementation of predictive current control of three phase PWM rectifier using space-vector modulation (SVM). Energy Conversion and Management, 51(12), 2473–2481. Doi: 10.1016/j.enconman.2010.05.010

Trzynadlowski, A. M., Patriciu, N., Blaabjerg, F., & Pedersen, J. K. (2001). A hybrid, current-source/voltage source power inverter circuit. IEEE Transactions on Power Electronics, 16(6), 866–871. doi:10.1109/63.974386

Blasko, V., & Kaura, V. (1997). A new mathematical model and control of a three-phase AC-DC voltage source converter. IEEE Transactions on Power Electronics, 12(1), 116–123. doi:10.1109/63.554176

Yacoubi, L., Al-Haddad, K., Dessaint, L.-A., & Fnaiech, F. (2006). Linear and Nonlinear Control Techniques for a Three-Phase Three-Level NPC Boost Rectifier. IEEE Transactions on Industrial Electronics, 53(6), 1908–1918. doi:10.1109/tie.2006.881990

Campos, A., Joos, G., Ziogas, P., & Lindsay, J. (n.d.). Analysis and design of a series voltage unbalance compensator based on a three-phase VSI operating with unbalanced switching functions. PESC `92 Record. 23rd Annual IEEE Power Electronics Specialists Conference. doi:10.1109/pesc.1992.254735

Ding, H., Shuangyan, S., Xianzhong, D., & Jun, G. (2002). A novel dynamic voltage restorer and its unbalanced control strategy based on space vector PWM. International Journal of Electrical Power & Energy Systems, 24(9), 693–699. doi:10.1016/s0142-0615(02)00004-2

Libano, F., Muller, S., Marques Braga, R., Rossoni Nunes, J., Mano, O., & Paranhos, I. (2006). Simplified Control of the Series Active Power Filter for Voltage Con- ditioning. 2006 IEEE International Symposium on Industrial Electronics. doi:10.1109/isie.2006.295827

Zhaoan Wang, Qun Wang, Weizheng Yao, & Jinjun Liu. (2001). A series active power filter adopting hybrid control approach. IEEE Transactions on Power Electronics, 16(3), 301–310. doi:10.1109/63.923761

Peng, F. Z., Pan, Z., Wang, S., & Hiruma, A. (n.d.). Power factor correction using a series active filter. IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC ’03. doi:10.1109/pesc.2003.1217681

Singh, B., Singh, B. N., Chandra, A., Al-Haddad, K., Pandey, A., & Kothari, D. P. (2004). A Review of Three Phase Improved Power Quality AC–DC Converters. IEEE Transactions on Industrial Electronics, 51(3), 641–660. doi:10.1109/tie.2004.825341

Wu, R., Dewan, S. B., & Slemon, G. R. (1991). Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control. IEEE Transactions on Industry Applications, 27(2), 355–364. doi:10.1109/28.73626

Bo Yin, Oruganti, R., Panda, S. K., & Bhat, A. K. S. (2008). An Output-Power-Control Strategy for a Three Phase PWM Rectifier Under Unbalanced Supply Conditions. IEEE Transactions on Industrial Electronics, 55(5), 2140–2151. doi:10.1109/tie.2008.918643


Copyright (c) 2022 Journal of Microelectronics and Solid State Devices